• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Monday, June 27, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

UBCO researchers light the way to cleaner water

Bioengineer by Bioengineer
July 15, 2021
in Chemistry
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Fluorescence lighting helps detect impurities in water

IMAGE

Credit: UBC Okanagan

Shining a beam of light into potentially contaminated water samples may hold the key to real-time detection of hydrocarbons and pesticides in water.

UBC Okanagan researchers are testing the use of fluorescence to monitor water quality. The results, they say, show great promise.

When a beam of light is shone into the water, it excites the electrons in molecules of certain compounds and causes them to emit light. The characteristics of the emitted light are like a fingerprint and can be used to identify certain contaminants, explains Nicolas Peleato, an assistant professor at UBCO’s School of Engineering.

“The challenge with using this fluorescence approach is that they are typically source-specific; meaning we have to calibrate for a particular water source and anticipate what specific contaminants we want to look for,” says Peleato. “In our latest work, we have developed a data processing technique that expands the effectiveness from one water source to others.”

This means their new technique removes a lot of the guesswork at the beginning of the process. As Peleato points out, every water source has a slightly different composition of organic compounds, which can hide the contaminant signals, so calibrating for each source is crucial for detection accuracy.

Using machine learning algorithms, Peleato and his graduate student Ziyu Li have devised an approach that addresses the challenge of source-specific models through mapping their similarities.

According to Li, it isn’t quite a one-size-fits-all method but it is close.

“By establishing a process that identifies similar patterns between water sources, the fluorescence detection becomes a viable option for real-time, accurate detection of hydrocarbons and pesticides,” explains Li.

During the testing process, the researchers look for unique shapes of fluorescence signals. Each unique shape indicates the presence of impurities and helps researchers determine what the impurity is and distinguish it from other compounds.

Water contaminated with hydrocarbons is known to be carcinogenic and can be dangerous, or toxic, to flora and fauna.

The researchers are now turning their attention to using this new approach to detect and monitor chemicals, such as the major toxic contaminants in oil sand tailings ponds that may impact surface water and groundwater.

“Building a comprehensive model that seamlessly transitions from one water source to another will speed up monitoring, and has the potential to be a game changer,” says Peleato.

###

This work was published in the journal Chemosphere, and funded in part by the Natural Sciences and Engineering Research Council of Canada.

Media Contact
Nathan Skolski
[email protected]

Original Source

https://news.ok.ubc.ca/2021/07/15/ubco-researchers-light-the-way-to-cleaner-water/

Related Journal Article

http://dx.doi.org/10.1016/j.chemosphere.2021.130064

Tags: BacteriologyBiomedical/Environmental/Chemical EngineeringBiotechnologyElectrical Engineering/ElectronicsSuperconductors/SemiconductorsTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

A user manipulates the supernumerary robotic arms using their feet in a virtual environment.

Third and fourth robotic arms feel like a part of the user’s own body

June 27, 2022
Rhodopsin capture

Ancient microbes may help us find extraterrestrial life forms

June 27, 2022

Scientists unravel mysterious mechanism behind “whisker crystal” growth

June 25, 2022

Spiral wave teleportation theory offers new path to defibrillate hearts, terminate arrhythmias

June 24, 2022
Please login to join discussion

POPULAR NEWS

  • Pacific whiting

    Oregon State University research finds evidence to suggest Pacific whiting skin has anti-aging properties that prevent wrinkles

    37 shares
    Share 15 Tweet 9
  • University of Miami Rosenstiel School selected for National ‘Reefense’ Initiative focusing on Florida and the Caribbean

    35 shares
    Share 14 Tweet 9
  • Saving the Mekong delta from drowning

    37 shares
    Share 15 Tweet 9
  • Sharks may be closer to the city than you think, new study finds

    34 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

UrbanizationVirusUniversity of WashingtonZoology/Veterinary ScienceWeaponryViolence/CriminalsVaccinesVaccineUrogenital SystemWeather/StormsVehiclesVirology

Recent Posts

  • Who’s really in control?
  • Third and fourth robotic arms feel like a part of the user’s own body
  • Novel, sensitive, and robust single-cell RNA sequencing technique outperforms competition
  • Ancient microbes may help us find extraterrestrial life forms
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....