• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, June 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Bioengineering

Synthetic DNA gel points the way to printing artificial organs

Bioengineer by Bioengineer
February 11, 2015
in Bioengineering
Reading Time: 2 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A two-part water-based gel made of synthetic DNA could bring the Heriot-Watt inventors of a 3D bio printer closer to being able to print organs for transplant, or to replace animal testing.

artificial organ

Members of the IB3 team PhD student Alan Faulkner-Jones and Dr Will Shu

The Heriot-Watt team, led by Professor Rory Duncan, head of the Institute of Biological Chemistry, Biophysics and Bioengineering (IB3) and Dr Will Shu, also of IB3, at the University’s School of Engineering and Physical Sciences faced two main challenges: finding a matrix or scaffold to support the live cells in 3D, and being able to produce a consistent product which would not be rejected by transplant recipients.

Professor Duncan explains. “The first challenge was that if we used a normal gel it was not possible to mix live cells with it for 3D printing. Colleagues at Tsinghua University in Beijing have developed a gel which, like some proprietary glues, comes as two separate liquids into which cells can be added. These do not turn into a gel until the two liquids are actually mixed together during the printing process.”

Dr Shu said, “Using the new gel in combination with our delicate 3D printing system, which does not involve heat, UV, salt or other harsh conditions to make the printed 3D object set, we have been able to demonstrate we can produce a three dimensional matrix containing highly viable live cells.

“Most importantly, working with the wider team led by Professor Duncan here at Heriot-Watt, we have also have run specialised imaging tests to prove that the cells we used remained alive and functioning at sub-cellular level after this process was complete.”

Another other major advantage for the team is the ability to manipulate the exact rigidity of the gel and the printed object, as well as assuring consistency in the end product.

Traditionally 3D printing gels have been based on natural products, for example collagen or materials extracted from seaweed, and not only is it hard to mix the live cells into these it is also hard to control the rigidity of the gel and to standardise it for production purposes. The new two-part synthetic DNA-based gel answers those challenges as well as producing a matrix which would not be rejected by recipients if the team reach their long-term goal of printing artificial organs for transplant.

Collaborative research
The breakthrough is, says Professor Duncan, a showcase for the benefits of teamwork. “This is a wonderful example of working across disciplines and across geographical boundaries. Chemists, engineers and biologists have come together from Scotland and China, to produce, test and demonstrate the benefits of this product.”

Professor Shu agrees. “Our eventual aim is to 3D print organs for transplant, as well as producing alternatives to the testing of drugs on animals. This new gel in combination with our 3D live cell printer is a huge step forward towards these potential long-term medical benefits.”

The joint project features in latest edition of Angewandte Chemie International.

Story Source:

The above story is based on materials provided by Heriot-Watt University.

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Why is the first Turkish bioengineering promotion website, Biyomuhendislik.com, so important?

February 4, 2023
blank

Robo-fish

September 19, 2016

Mice born from ‘tricked’ eggs

September 17, 2016

UCLA researchers use stem cells to grow 3-D lung-in-a-dish

September 16, 2016
Please login to join discussion

POPULAR NEWS

  • Green brake lights in the front could reduce accidents

    Study from TU Graz Reveals Front Brake Lights Could Drastically Diminish Road Accident Rates

    159 shares
    Share 64 Tweet 40
  • New Study Uncovers Unexpected Side Effects of High-Dose Radiation Therapy

    76 shares
    Share 30 Tweet 19
  • Pancreatic Cancer Vaccines Eradicate Disease in Preclinical Studies

    70 shares
    Share 28 Tweet 18
  • How Scientists Unraveled the Mystery Behind the Gigantic Size of Extinct Ground Sloths—and What Led to Their Demise

    65 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

AI TechX Secures Grant to Revolutionize Cattle Disease Detection

Machine Learning Advances Enable Diagnostic Testing Beyond the Lab

Rethinking Male Risk in Bronchopulmonary Dysplasia

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.