• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Tuesday, October 3, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Bioengineering

Robo-fish

Bioengineer by Bioengineer
September 19, 2016
in Bioengineering
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
Oscar M. Curet, Ph.D., in FAU's Department of Ocean and Mechanical Engineering (far right), has been observing how animals move to identify the differences between engineering systems and what occurs in nature. His team has a prototype under development, which was inspired by the Knife fish. Photo Credit: Florida Atlantic University
Oscar M. Curet, Ph.D., in FAU’s Department of Ocean and Mechanical Engineering (far right), has been observing how animals move to identify the differences between engineering systems and what occurs in nature. His team has a prototype under development, which was inspired by the Knife fish. Photo Credit: Florida Atlantic University

By observing how fish swim and use their fins to move seamlessly within the ocean depths, a researcher at Florida Atlantic University is mimicking this movement to increase maneuverability and enhance the motion of underwater vehicles and robotic systems.

To advance this research area, Oscar M. Curet, Ph.D., an assistant professor in the Department of Ocean and Mechanical Engineering at Florida Atlantic University, in collaboration with Erik Engeberg, Ph.D., Manhar Dhanak, Ph.D., and Karl von Ellenrieder, Ph.D., also in FAU’s Department of Ocean and Mechanical Engineering, has received a $258,008 grant from the U.S. Department of the Navy, Office of Naval Research for state-of-the-art instrumentation that will enable 3D observation of underwater flow dynamics.

The Volumetric Particle Image Velocimetry (PIV) System, which resembles a high-tech laser camera, will help researchers at FAU to measure and better understand how fluid dynamics interact with bio-inspired flexible propulsors in complex underwater environments. This system also will perform 2D PIV, stereo PIV, and micro-PIV synchronized with body kinematics. The research will promote and enhance interdisciplinary work at the intersection of engineering, robotics, biology, biomimetics and physical sciences.

“If we want to understand how to manipulate a propulsive system underwater, we need to understand its effect on the flow in the water,” said Curet. “The addition of this vital equipment in our laboratory will allow the precise measurement and analysis of complex 3D flow structures that until now have remained elusive.” Measurements of three-dimensional or 3D flow is a crucial element in the progress of understanding the underlying physics of fluid dynamics of flexible propulsors.

Curet has been observing how animals move to identify the differences between engineering systems and what occurs in nature. He is adapting the suppleness of fins on fish and wings on birds to develop flexible structures that can respond the same way nature does — a departure from the more rigid materials and structures currently used for various engineering products.

“Birds can change the shape of their wings or change their morphology to adjust for wind conditions and fish can alter their fins in a quick manner to adjust their movement through turbulent waters,” said Curet. “They can adjust depending on the flow conditions of the air and water. We can’t yet do that with our products, that’s why it’s so critical for us to understand the interaction between flexible structures and their effects in propulsion, maneuverability and how they change directions. Everything interacts with flow in water or air. If you’re moving, you’re interacting with this flow.”

Curet and his team have a prototype that is currently under development (funded by the National Science Foundation), which was inspired by the Knife fish. This particular fish has the unique ability to effortlessly move forward, backward, vertically and horizontally. The prototype, composed of 3D printed materials, 16 motors, and a membrane, is being designed to be a completely submersible underwater vehicle that will be able to conduct a host of different tasks like surveillance, underwater floor surveys, and testing underwater structures. Curet plans to develop the prototype so that there can be a number of vehicles working in concert to co-interact with humans on tasks required for both commercial and military purposes in challenging underwater environments.

“We are very grateful to the Office of Naval Research for supporting the unique research that is being spearheaded by Dr. Curet at Florida Atlantic University,” said Javad Hashemi, Ph.D., professor and chair of the Department of Ocean and Mechanical Engineering in FAU’s College of Engineering and Computer Science. “Results from the series of projects that will be conducted using this important technology will yield fundamental knowledge on how flexible surfaces are able to interact and modify their wake structure to improve performance. Furthermore, this instrumentation will enhance student education and training by integrating the 3D-PIV system in select research-based classes.”

Story Source:

The above post is reprinted from materials provided by Florida Atlantic University.

The post Robo-fish appeared first on Scienmag.

Share19Tweet9Share2ShareShareShare2

Related Posts

blank

Why is the first Turkish bioengineering promotion website, Biyomuhendislik.com, so important?

February 4, 2023
blank

Mice born from ‘tricked’ eggs

September 17, 2016

UCLA researchers use stem cells to grow 3-D lung-in-a-dish

September 16, 2016

Sixteen MIT grad students named Siebel Scholars for 2017

September 16, 2016
Please login to join discussion

POPULAR NEWS

  • blank

    Microbe Computers

    59 shares
    Share 24 Tweet 15
  • A pioneering study from Politecnico di Milano sheds light on one of the still poorly understood aspects of cancer

    35 shares
    Share 14 Tweet 9
  • Fossil spines reveal deep sea’s past

    34 shares
    Share 14 Tweet 9
  • Scientists go ‘back to the future,’ create flies with ancient genes to study evolution

    75 shares
    Share 30 Tweet 19

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

How floods kill, long after the water has gone – global decade-long study

Host genetics helps explain childhood cancer survivors’ mortality risk from second cancers

Study uncovers reasons Americans did not get booster vaccines

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 56 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In