• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 8, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

SwRI demonstrates balloon-based solar observatory

Bioengineer by Bioengineer
November 7, 2019
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Low-cost option breaks down barriers to solar research

IMAGE

Credit: Southwest Research Institute


SAN ANTONIO — Nov. 7, 2019 — Southwest Research Institute successfully demonstrated a miniature solar observatory on a high-altitude balloon November 1. The SwRI Solar Instrument Pointing Platform (SSIPP) — a reusable, high-precision solar observatory about the size of a mini fridge and weighing 160 pounds — was carried by a stratospheric balloon, collecting 75 minutes of solar images in the proof-of-concept flight.

“SSIPP is a novel, low-cost observatory prototype,” said SwRI’s Dr. Craig DeForest, principal investigator of the NASA Flight Opportunities mission. “We are working to provide similar infrastructure and flexibility to a ground-based observatory, delivered to near-space.”

SSIPP collects solar data using infrared, ultraviolet or visible light instruments on an optical table, similar to those used in ground-based observatories but from a near-space environment. SSIPP is an arcsecond-class observatory, which provides optical precision equivalent to imaging a dime from a mile away. The platform supports the development of custom solar instruments. Collecting data from the edge of space — around 20 miles above the Earth’s surface — avoids image distortions caused by looking through the atmosphere.

“SSIPP could support the development of a range of new instruments for the near-space environment at relatively low cost,” DeForest said. SSIPP includes an “optical table,” a stable platform used to support optics in a laboratory environment. “Using a standard optical table platform increases flexibility, allowing scientists to develop new technologies without designing a custom observatory. For instance, scientists are interested in the cacophony produced by the roiling solar environment.”

While sound cannot travel through the vacuum of space, scientists can detect sound on the Sun by imaging the disturbances it creates in the solar atmosphere. During the demonstration flight, which imaged a special range of blue light called the “g band,” SwRI scientists Dr. Glenn Laurent and Dr. Derek Lamb demonstrated the platform’s pointing capability and will search the images for visible signatures of “high-frequency” solar sound waves, which are actually some eight octaves below the deepest audible notes. In comparison, the most studied sound waves in the Sun are five octaves deeper.

“The transfer of heat to the surface of our star is a violent and tremendously loud process,” DeForest said. “Sound waves can heat the solar atmosphere to extremely high temperatures, but it’s a poorly understood process. Existing measurements cannot account for all the energy required. The 10-second frequency range is very hard to measure from the ground, because Earth’s turbulent atmosphere confuses the signal.”

Because existing spaceborne assets are optimized for different science, the frequency range observed by SSIPP fills a gap in current measurements, highlighting the importance of new instruments to advance knowledge.

“Upon reaching the stratosphere, SSIPP immediately locked onto the solar disk using a novel two-stage pointing system,” Laurent said. “The next step for SSIPP is to partner with outside institutions to extend quick-turnaround solar flights to a range of scientific instrumentation.”

###

SSIPP launched aboard a World View stratospheric balloon, funded by NASA’s Flight Opportunities Program under the Space Technology Mission Directorate. The program is managed by NASA’s Armstrong Flight Research Center in Edwards, California.

For more information, visit: https://www.swri.org/heliophysics.

Release url: https://www.swri.org/press-release/balloon-based-solar-observatory-ssipp?utm_source=EurekAlert!&utm_medium=Distribution&utm_campaign=Balloon-PR

CLIENT SERVICE LINK : https://www.swri.org/heliophysics?utm_source=EurekAlert!&utm_medium=Distribution&utm_campaign=Balloon-PR

Media Contact
Deb Schmid
[email protected]
210-522-2254

Original Source

https://www.swri.org/press-release/balloon-based-solar-observatory-ssipp

Tags: AstronomyAstrophysicsComets/AsteroidsExperiments in SpaceMeteorologyPlanets/MoonsSatellite Missions/ShuttlesSpace/Planetary Science
Share13Tweet8Share2ShareShareShare2

Related Posts

Scientists Convert Plastic Waste into High-Performance CO2 Capture Materials

Scientists Convert Plastic Waste into High-Performance CO2 Capture Materials

September 5, 2025
Decoding Orderly and Disorderly Behavior in 2D Nanomaterials: Paving the Way for AI-Driven Custom Designs

Decoding Orderly and Disorderly Behavior in 2D Nanomaterials: Paving the Way for AI-Driven Custom Designs

September 5, 2025

Physicists Develop Visible Time Crystal for the First Time

September 5, 2025

Adaptive Visible-Infrared Camouflage Enables Wide-Spectrum Radiation Control for Extreme Temperature Environments

September 5, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    150 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

EA5181 Phase 3 Trial Shows No Overall Survival Advantage for Concurrent Plus Consolidative Durvalumab Over Consolidation Alone in Unresectable Stage 3 NSCLC

Closed-Loop Recycling of Mixed Polyesters via Catalysis

New Pathway Fuels Cancer Cells with Acetyl-CoA

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.