• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Thursday, January 21, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Quantum insulators create multilane highways for electrons

Bioengineer by Bioengineer
December 16, 2020
in Chemistry
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Zhao et al., Nature

New energy-efficient electronic devices may be possible thanks to research that demonstrates the quantum anomalous Hall (QAH) effect — where an electrical current does not lose energy as it flows along the edges of the material — over a broader range of conditions. A team of researchers from Penn State has experimentally realized the QAH effect in a multilayered insulator, essentially producing a multilane highway for the transport of electrons that could increase the speed and efficiency of information transfer without energy loss.

“Low energy consumption is key in electronic devices, so there is a lot of research into materials that can improve the efficiency of electron flow,” said Cui-Zu Chang, assistant professor of physics at Penn State who led the research. “Increasing the number of electrons in most metals results in a sort of traffic jam because electrons moving in different directions get scattered and repel each other. But in QAH insulators, electron flow is constrained to the edges, and electrons on one edge can only go in one direction and those on the other edge can only go the opposite direction, like splitting a road into a two-lane highway. In this study, we fabricated QAH insulators that could be layered to essentially create parallel highways on top of each other.”

QAH insulators are created in a material called a topological insulator — a thin layer of film with a thickness of only a couple dozen atoms — that have been made magnetic so that they only conduct current along the edges. To make topological insulators magnetic, researchers add magnetic impurities into the material in a process called diluted magnetic doping. In this study, the Penn State research team used a technique called molecular beam epitaxy to fabricate multilayered topological insulators, carefully controlling where magnetic doping occurred.

“QAH insulators are of particular interest because they theoretically have no energy dissipation, meaning that electrons do not lose energy in the form of heat as electrical current flows along the edges,” said Chao-Xing Liu, associate professor of physics at Penn State and coauthor of the paper. “This unique property makes QAH insulators a good candidate for use in quantum computers and other small, fast electronic devices.”

In prior studies, the QAH effect had been experimentally realized only in materials where an important quantity called the Chern number had a value of 1, essentially with a single two-lane highway for electrons. In this study, the researchers stacked alternating layers of magnetic and non-magnetic topological insulators and were able to realize the QAH state with Chern numbers up to 5, essentially constructing 5 parallel highways for electrons on each side of the material for a total of 10 lanes. They present their results in a paper appearing online Dec. 16 in the journal Nature.

“We do see some dissipation of current at connection points between QAH insulators and metallic electrodes, which occurs in the form of heat,” said Liu. “You can think of it like the on and off ramps of a busy highway, where the narrow merge lane into local traffic slows you down. By building more parallel highways, more merge lanes can connect the highways to local traffic, so that the overall speed of the whole traffic system can be greatly improved.”

The researchers found that by increasing the thickness of the QAH insulator layers, or by manipulating the concentration of magnetic doping in the QAH layer, they could tune the Chern number of the sample. “In other words, we could change the number of lanes in the highway with an external knob,” said Chang. “Even at high Chern numbers, the QAH insulators had no dissipation along the edge channels. This provides a proof-of-concept for devices that take advantage of this dissipationless edge current.”

In this study, the researchers carefully fabricated separate QAH insulators with different Chern numbers. In the future, they hope to develop a technique to tune the Chern number of an already fabricated sample, for “real-time” control of the electron traffic in an information highway.

Translating the fundamental advance made in this study into a practical technology is still a challenge since the phenomena studied here are limited to very low temperatures–about a hundredth of a degree Kelvin above absolute zero. But Chang is optimistic: “Through creative material synthesis, we can envision scenarios that might help us realize these effects under technologically relevant conditions.”

###

In addition to Chang and Liu, the research team at Penn State includes graduate students Yi-Fan Zhao, Ruoxi Zhang, Ruobing Mei, Ling-Jie Zhou, Ya-Qi Zhang, Jiabin Yu, and Run Xiao; postdoctoral researcher Hemian Yi; Materials Research Institute staff scientist Ke Wang; and faculty members Nitin Samarth and Moses H. W. Chan.

This work was primarily supported by the Department of Energy. Additional support was provided by the U.S. Army Research Office, the National Science Foundation, and the Gordon and Betty Moore Foundation.

Media Contact
Gail McCormick
[email protected]

Original Source

https://science.psu.edu/news/Chang12-2020

Related Journal Article

http://dx.doi.org/10.1038/s41586-020-3020-3

Tags: Chemistry/Physics/Materials SciencesMaterialsNanotechnology/Micromachines
Share12Tweet7Share2ShareShareShare1

Related Posts

IMAGE

Diamonds need voltage

January 21, 2021
IMAGE

Smooth touchdown: novel camera-based system for automated landing of drone on a fixed spot

January 21, 2021

NAS honors Heino Falcke and Sheperd Doeleman with Henry Draper Medal

January 21, 2021

INL partners with Coreform to improve open-source modeling and simulation tool MOOSE

January 21, 2021
Next Post
IMAGE

Giving cells an appetite for viruses

IMAGE

Most-distant galaxy helps elucidate the early universe

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    The map of nuclear deformation takes the form of a mountain landscape

    54 shares
    Share 22 Tweet 14
  • People living with HIV face premature heart disease and barriers to care

    64 shares
    Share 26 Tweet 16
  • New drug form may help treat osteoporosis, calcium-related disorders

    40 shares
    Share 16 Tweet 10
  • New findings help explain how COVID-19 overpowers the immune system

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

BiologyTechnology/Engineering/Computer SciencePublic HealthGeneticscancerEcology/EnvironmentMedicine/HealthChemistry/Physics/Materials SciencesClimate ChangeInfectious/Emerging DiseasesMaterialsCell Biology

Recent Posts

  • How the brain learns that earmuffs are not valuable at the beach
  • Diamonds need voltage
  • New journal to push the boundaries of biological imaging
  • COVID-19 virus helps block host immunity
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In