• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

New study presents transformative metasurface based on zerogap embedded template

Bioengineer by Bioengineer
July 6, 2021
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: UNIST

A research team, led by Professor Dai-Sik Kim in the Department of Physics at UNIST has developed a new technique of predefining the crack pattern on a flexible substrate by a sequential deposition of metallic layers which leads to a formation of a “zero-nanometer gap, or a “zerogap,” between the adjacent lateral patterns.

These gaps, according to the research team, readily open and recover with gentle bending and relaxing of the flexible substrate, precisely along the rims of the pre-patterns of centimeter lengths. Furthermore, in a prototypical pattern of densely packed slit arrays, these gaps serve as antennas achieving transparency for polarizations perpendicular to the length of the gap when opened and shut off all the incident lights when closed. These gaps are also fully tunable and healable from widths of zero nanometers to all the way up to several hundreds of nanometers, leading to a very high modulation depth throughout many times of repeated modulations, noted the research team.

Unlike most reconfigurable metasurfaces, which suffer from fatigue and gradual decline in performances after repeated operations, ZET is effectively fatigue-free and can readily be used in industrial applications where durability of the sample is crucial. Indeed, when the research team investigated the durability of their ZET samples, they exhibited an improved performance over time even after 10,000 repeated stretching/bending cycles.

“While we used an array of slits as a test system in this study, the method can readily be extended to any type of pattern with closed loops such as coaxial apertures, ring resonators, or grooves,” noted the research team. “Thus, our zerogap technology bears the potential to significantly improve all kinds of active optical components and therefore finds numerous applications in electromagnetic wave shielding, polarization conversion, and active filters as well as in quantum transport studies resulting from deep sub-nanometer-wide gaps.”

###

This study has been carried out jointly by Seoul National University and Kangwon National University with the support of the National Research Foundation of Korea (NRF). It was made available in March 2021, ahead of final publication in the June 2021 issue of Advanced Optical Materials.

Media Contact
JooHyeon Heo
[email protected]

Original Source

https://news.unist.ac.kr/new-study-presents-transformative-metasurface-based-on-zerogap-embedded-template/

Tags: Chemistry/Physics/Materials SciencesElectromagneticsIndustrial Engineering/ChemistryMaterials
Share12Tweet8Share2ShareShareShare2

Related Posts

Ultrafast Untethered Levitation Device Harnesses Squeeze Film for Omni-Directional Transport

Ultrafast Untethered Levitation Device Harnesses Squeeze Film for Omni-Directional Transport

August 12, 2025
blank

Tan Leads Investigation into Ferroelectric Oxides as Heterogeneous Photocatalysts for Ethane Dehydrogenation

August 12, 2025

Revolutionary Research Unveils “Pore Science and Engineering” Paving the Way for Next-Generation Porous Materials

August 12, 2025

Kennesaw State Physics Professor Awarded Three-Year Grant to Develop Particle Collider Simulations

August 12, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    78 shares
    Share 31 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    58 shares
    Share 23 Tweet 15
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

RSNA AI Challenge Models Demonstrate Independent Mammogram Interpretation Capabilities

Breakthrough Protein Therapy Emerges as First-Ever Antidote for Carbon Monoxide Poisoning

Mount Sinai Secures $4 Million Grant from American Cancer Society to Establish Cancer Health Research Center

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.