• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Tuesday, January 26, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Native biodiversity collapse in the Eastern Mediterranean

Bioengineer by Bioengineer
January 7, 2021
in Biology
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Most native species are going locally extinct, while introduced tropical species thrive

IMAGE

Credit: © Paolo Albano

The coastline of Israel is one of the warmest areas in the Mediterranean Sea. Here, most marine species have been at the limits of their tolerance to high temperatures for a long time – and now they are already beyond those limits. Global warming has led to an increase in sea temperatures beyond those temperatures that Mediterranean species can sustain. Consequently, many of them are going locally extinct.

Paolo Albano’s team quantified this local extinction for marine molluscs, an invertebrate group encompassing snails, clams and mussels. They thoroughly surveyed the Israeli coastline and reconstructed the historical species diversity using the accumulations of empty shells on the sea bottom.

Biodiversity loss in the last few decades

The shallow habitats at scuba diving depths are affected most. Here, the researchers were not able to find living individuals of up to 95 per cent of the species whose shells were found in the sediments. The study suggests that most of this loss has occurred recently, presumably in just the last few decades.

Additionally, most of the species still found alive cannot grow enough to reproduce, “a clear sign that the biodiversity collapse will further continue,” says Albano. In contrast, the tropical species that enter from the Suez Canal thrive. The warm waters in the Eastern Mediterranean are very suitable habitats for them. Indeed, they occur in large populations and their individuals are fully fit to reproduce.

“For anyone accustomed to snorkel or dive in the Mediterranean,” explains the researcher, “the underwater scenario in Israel is unrecognisable: The most common species are missing, while in contrast tropical species are everywhere”.

The future perspectives for the Mediterranean are not good. The sea will continue to warm even if we would stop carbon dioxide emissions today. This is due to the inertia of the system, the long braking distance, so to speak.

It is thus likely that the biodiversity collapse will continue to spread. It may already be occurring in other eastern Mediterranean areas not surveyed yet, and it will expand to the West and intensify. Only intertidal organisms, which are to some extent pre-adapted to temperature extremes, and habitats in deeper water, where the temperature is markedly lower, will continue to persist – at least for some time.

“But the future is dim unless we immediately act to reduce our carbon emissions and to protect marine habitats from other pressures which contribute to biodiversity loss,” says Paolo Albano, “The changes that already occurred in the warmest areas of the Mediterranean may not be reversible, but we would be able to save large parts of the rest of the basin.”

Methodologically, the study was also interesting due to its interdisciplinary character: “These results came from the cooperation of scientists with very different backgrounds,” says Martin Zuschin, Head of the Department of Palaeontology and co-author of the study – “In particular, the cooperation between ecologists and palaeontologists is providing unique new views on how humankind is impacting biodiversity”.

###

Publication in Proceedings of the Royal Society B: Biological Sciences:
Albano P.G., Steger J., Bošnjak M., Dunne B., Guifarro Z., Turapova E., Hua Q., Kaufman D.S., Rilov G., Zuschin M.: Native biodiversity collapse in the Eastern Mediterranean. Proceedings of the Royal Society B, 2021.
DOI: 10.1098/rspb.2020.2469

Media Contact
Dr. Paolo Albano
[email protected]

Original Source

https://royalsocietypublishing.org/doi/10.1098/rspb.2020.2469

Related Journal Article

http://dx.doi.org/10.1098/rspb.2020.2469

Tags: ArchaeologyBiodiversityBiologyClimate ChangeEcology/EnvironmentEvolutionMarine/Freshwater BiologyPaleontologyZoology/Veterinary Science
Share13Tweet8Share2ShareShareShare2

Related Posts

IMAGE

Breakthrough design at UBCO vastly improves mechanical heart valve

January 26, 2021
IMAGE

How fast could SARS-CoV-2 be detected?

January 25, 2021

Anti-freeze for cell membranes

January 25, 2021

Bioorthogonally catalyzed lethality strategy generates targeting drugs within tumor

January 25, 2021
Next Post
IMAGE

Solstice

IMAGE

Unusual sex chromosomes of platypus, emu and duck

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    The map of nuclear deformation takes the form of a mountain landscape

    54 shares
    Share 22 Tweet 14
  • People living with HIV face premature heart disease and barriers to care

    68 shares
    Share 27 Tweet 17
  • New drug form may help treat osteoporosis, calcium-related disorders

    41 shares
    Share 16 Tweet 10
  • New findings help explain how COVID-19 overpowers the immune system

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

MaterialsCell BiologyClimate ChangeEcology/EnvironmentPublic HealthTechnology/Engineering/Computer ScienceChemistry/Physics/Materials SciencesMedicine/HealthGeneticscancerBiologyInfectious/Emerging Diseases

Recent Posts

  • Tungsten-substituted vanadium oxide breathes fresh air into catalyst technology
  • Beauty in imperfection: How crystal defects can help convert waste heat into electricity
  • Highly specific synaptic plasticity in addiction
  • Breakthrough design at UBCO vastly improves mechanical heart valve
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In