• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Factors that may predict next pandemic

Bioengineer by Bioengineer
March 30, 2021
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Climate change associated with emerging disease spread

IMAGE

Credit: Singh et al.

Humans are creating or exacerbating the environmental conditions that could lead to further pandemics, new University of Sydney research finds.

Modelling from the Sydney School of Veterinary Science suggests pressure on ecosystems, climate change and economic development are key factors associated with the diversification of pathogens (disease-causing agents, like viruses and bacteria). This has potential to lead to disease outbreaks.

The research, by Dr Balbir B Singh, Professor Michael Ward, and Associate Professor Navneet Dhand, is published in the international journal, Transboundary and Emerging Diseases.

They found a greater diversity of zoonotic diseases (diseases transmitted between animals and humans) in higher income countries with larger land areas, more dense human populations, and greater forest coverage.

The study also confirms increasing population growth and density are major drivers in the emergence of zoonotic diseases. The global human population has increased from about 1.6 billion in 1900 to about 7.8 billion today, putting pressure on ecosystems.

Associate Professor Dhand said: “As the human population increases, so does the demand for housing. To meet this demand, humans are encroaching on wild habitats. This increases interactions between wildlife, domestic animals and human beings which increases the potential for bugs to jump from animals to humans.”

“To date, such disease models have been limited, and we continue to be frustrated in understanding why diseases continue to emerge,” said Professor Ward, an infectious diseases expert.

“This information can help inform disease mitigation and may prevent the next COVID-19.”

Other zoonotic diseases that have recently devastated human populations include SARS, avian (H5N1) and swine (H1N1) flu, Ebola and Nipah – a bat-borne virus.

Factors predicting disease

The researchers discovered country-level factors predicting three categories of disease: zoonotic, emerging (newly discovered diseases, or those diseases that have increased in occurrence or occurred in new locations), and human.

  • Zoonotic diseases: land area, human population density, and area of forest. Areas with high zoonotic disease diversity include Europe, North America, Latin America, Australia, and China.
  • Emerging diseases: land area, human population density and the human development index. Areas with high emerging disease diversity include Europe, North America,
  • Human diseases: high per capita health expenditure, mean annual temperature, land area, human population density, human development index and rainfall. Areas with high human disease diversity include North America, Latin America, China and India.

“Countries within a longitude of -50 to -100 like Brazil, developed countries like United States and dense countries such as India were predicted to have a greater diversity of emerging diseases,” Professor Ward said.

The researchers also noted weather variables, such as temperature and rainfall, could influence the diversity of human diseases. At warmer temperatures, there tend to be more emerging pathogens.

The analyses demonstrate that weather variables (temperature and
rainfall) have the potential to influence pathogen diversity
These factors combined confirm human development – including human-influenced climate change – not only damages our environment but is responsible for the emergence of infectious diseases, such as COVID-19.

Using data to help prevent outbreaks

“Our analysis suggests sustainable development is not only critical to maintaining ecosystems and slowing climate change; it can inform disease control, mitigation, or prevention,” Professor Ward said.

“Due to our use of national-level data, all countries could use these models to inform their public health policies and planning for future potential pandemics.”

###

Methodology: The authors used 13,892 unique pathogen-country combinations and 49 socioeconomic and environmental variables to develop this model. Information from 190 countries was analysed using statistical models to identify drivers for emerging and zoonotic diseases.

Declaration: The authors would like to thank the Australian Government’s Department of Education and Training for awarding a 2018 Endeavour Research Fellowship to the primary author of this research.

The authors acknowledge the data relied for this research is incomplete. Reasons include underreporting of some previously known and undiscovered pathogens, particularly in less developed countries. For some of the predictor variables, the latest data available had missing values because recent data had not been updated.

Media Contact
Loren Smith
[email protected]

Related Journal Article

http://dx.doi.org/10.1111/tbed.14072

Tags: Climate ChangeDisease in the Developing WorldEarth ScienceEnvironmental HealthInfectious/Emerging DiseasesMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

NIH Grant Fuels George Mason Researcher’s Advances in AI Storytelling for Dementia Care

October 28, 2025

Enhanced Adenine Base Editing with Hybrid Guide RNAs

October 28, 2025

Unraveling Neurodegeneration: The Gut-Brain-Immune Connection Explored

October 28, 2025

Post-COVID Nasal Cells Altered by TNFα, TGFβ

October 28, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1288 shares
    Share 514 Tweet 322
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    311 shares
    Share 124 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    198 shares
    Share 79 Tweet 50
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    135 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Enhancing Capacitive Performance of Eu-Doped NiCo2O4 Nanoflowers

Engineers Develop Innovative Hydrogels to Track Bodily Activity

NIH Grant Fuels George Mason Researcher’s Advances in AI Storytelling for Dementia Care

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.