• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

Computational advances in the label-free quantification of cancer proteomics data

Bioengineer by Bioengineer
December 27, 2018
in Cancer
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

This article by Dr. Feng Zhu et al. is published in Current Pharmaceutical Design, 2018

In recent years, proteomics research has become a popular method for characterizing the functional proteins driving the transformation of malignancy, tracing the large-scale protein alterations induced by anti-cancer drug, as well as discovering the innovative targets and first-in-class drugs for oncologic disorders. Proteomics became popular due to its ability to provide quantitative and dynamic information on tumor genesis and development by directly profiling protein expression. Label-free Quantification (LFQ) is an important method for quantifying protein expression in cancer proteomics. However, the main challenge in using this method for discovering anti-cancer targets and drugs is the low precision, poor reproducibility, and inaccuracy of the LFQ of proteomics data.

This paper presents a review of the recent advances and the computational development of LFQ in cancer proteomics. PubMed and Web of Science databases were searched for label-free quantification approaches, cancer proteomics, and computational advances. A number of experiments including popular acquisition techniques and state-of-the-art quantification tools are critically analyzed and discussed. Following this, the processing approaches which included transformation, normalization, filtering, and imputation were discussed and their impacts on improving LFQ performance of cancer proteomics were evaluated.

The authors also discuss the future direction for enhancing the computation-based quantification technique for cancer proteomics. The dramatic increase in the use of LFQ approaches in cancer proteomics can lead to the enhancement of quantification strategies for studying cancer proteomics in the future once its limitations are accounted for.

###

The article is Open Access till 31st December, 2018. To obtain the article, please visit: http://www.eurekaselect.com/166976

Media Contact
Faizan ul Haq
[email protected]
http://dx.doi.org/10.2174/1381612824666181102125638

Tags: BiochemistrycancerMedicine/HealthMolecular BiologyPharmaceutical ChemistryPharmaceutical SciencePharmaceutical SciencesPharmaceutical/Combinatorial ChemistryToxicology
Share12Tweet8Share2ShareShareShare2

Related Posts

MCT4 Controls Metabolism in GBM Cells

September 26, 2025

Acetamido Linkers in Anticancer Drug Design

September 26, 2025

Unlocking Typhonium flagelliforme’s Anti-Cancer Power via NEK7

September 26, 2025

Combating Cancer: Linking Metabolism and Replication Stress

September 26, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    79 shares
    Share 32 Tweet 20
  • Physicists Develop Visible Time Crystal for the First Time

    72 shares
    Share 29 Tweet 18
  • Scientists Discover and Synthesize Active Compound in Magic Mushrooms Again

    55 shares
    Share 22 Tweet 14
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    51 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Tracking Sinking Microplastics at North Atlantic Seamount

Hepatitis B Transcriptomes Reveal Drug-Resistance Potential

Urban and Cropland Growth Threaten Southeast Asia’s Habitats

  • Contact Us

Bioengineer.org Ā© Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org Ā© Copyright 2023 All Rights Reserved.