• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Vexing Nemo: Motorboat noise makes clownfish stressed and aggressive

Bioengineer by Bioengineer
April 8, 2020
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Hormonal changes caused by motorboat noise cause clownfish to hide, skip meals and attack their neighbors — putting damselfish in distress

IMAGE

Credit: Frederick Zuberer

Hormonal changes caused by motorboat noise cause clownfish to hide, skip meals and attack their neighbours – putting damselfish in distress.

Working on the reefs around Moorea in French Polynesia, an international team of scientists exposed 40 pairs of clownfish to recordings of natural reef sounds or motorboat noise for up to two days. Motorboat noise caused clownfish to hide in the protective tentacles of their host anemone, move less into open water to feed and to be more aggressive towards domino damselfish that also reside in the anemone.

The researchers – from France, Chile and the UK – also found that noise-affected anemonefish were unable to respond appropriately to a second stressor, likely putting them at greater risk from threats such as predators and climate change.

The study, published in the journal Environmental Pollution, found noise-exposed fish had elevated levels of the stress hormone cortisol and the reproductive hormones testosterone and 11-ketotestosterone, which corresponded with observed behavioural changes. These measurable hormones offer a window into complex behaviours and could be used to develop new noise-mitigation tools.

Lead author, Associate Professor Suzanne Mills at the École Pratique des Hautes Études (EPHE) PSL Université Paris, CRIOBE, France, said, “The high cortisol levels after two days of exposure suggest that clownfish become chronically stressed by motorboat noise. This compromises the stress response system leaving clownfish unable to mount appropriate responses to further stressful events. If these stressful events include a predator, motorboat noise could have grave implications.”

Ricardo Beldade, Associate Professor at the Pontificia Universidad Católica de Chile, and previously with the Centre National de la Recherche Scientifique (CNRS) at CRIOBE, France said, “Clownfish defended their anemone territory aggressively during motorboat noise, which requires more energy. However, as the fish hid more and moved less to feed, even after the motorboat noise had passed, they may be unable to compensate through more foraging, with potentially detrimental impacts on growth and even survival.”

Andy Radford, Professor of Behavioural Ecology at the University of Bristol, said: “Experiments that consider behaviour of wild animals in natural conditions–as we have done in this study–are crucial if we are to understand fully the impact of anthropogenic noise. Our results highlight that behavioural changes caused by anthropogenic noise are likely underpinned by alterations in the stress response (cortisol) and certain steroid hormones.”

Dr Sophie Nedelec, University of Exeter, said, “Now we know that hormonal responses are the mechanisms driving behavioural changes to motorboat noise, they can be a useful tool in regulation. We might be able to predict the duration and/or interval times of motorboat noise exposure that allow individuals to return to normal behaviour.”

Steve Simpson, Professor of Marine Biology & Global Change at the University of Exeter, added, “Hormonal responses to different boat engines, propeller designs and spatial management of boating activities can be compared to reduce the impact of this globally prevalent pollutant. Hormonal responses are currently an underemployed tool for managing the noise of the 100,000s of motorboats used around the world.”

Mills summarised, “Our new findings highlight the need to control man-made noise in marine protected habitats.”

###

Paper:

‘Hormonal and behavioural effects of motorboat noise on wild coral reef fish’ by Mills, S.C., Beldade, R., Henry, L., Laverty, D., Nedelec, S.L., Simpson, S.D., & Radford, A.N. 2020 in Environmental Pollution.

Media Contact
Shona East
[email protected]

Related Journal Article

http://dx.doi.org/10.1016/j.envpol.2020.114250

Tags: BiodiversityBiologyClimate ChangeEcology/EnvironmentMarine/Freshwater BiologyOceanographyZoology/Veterinary Science
Share13Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.