• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Winning gene combination takes all

Bioengineer by Bioengineer
May 7, 2021
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Image supplied by researchers in the Osbourn laboratory at the John Innes Centre

Researchers have traced the remaining last steps of the biological pathway that gives oats resistance to the deadly crop disease take-all.

The discovery creates opportunities for new ways of defending wheat and other cereals against the soil-borne root disease.

The research team have already taken the first step in this aim by successfully reconstituting the self-defence system in the model plant Nicotiana benthamiana.

Further experiments to establish the avenacin biosynthetic pathway in wheat’s more complex genome, to test if it will provide the same resistance to take-all and other diseases, have already been initiated in collaboration with the National Institute of Botany (NIAB) in Cambridge.

The research by CEPAMS – a collaboration between the John Innes Centre and the Chinese Academy of Sciences – also delivers fresh insights into the mechanisms that shape genome architecture and adaptive evolution in plants.

Avenacins are antimicrobial compounds synthesised in the roots of oats where they offer protection against soil-borne diseases such as take-all. This fungal pathogen causes huge yield losses in wheat and there is no effective means of control.

Wheat and other cereals and grasses do not make these compounds but a better understanding of how they are produced in oat will give crop scientists knowledge they need to create disease resistant lines of wheat using modern technologies.

Earlier experiments had characterised and cloned ten avenacin biosynthetic pathway genes found in the oat genome.

Here, using a genomics-driven approach, with sequencing carried out by Professor Bin Han’s group at the Chinese Academy of Sciences, the team elucidated the complete pathway, encoded by 12 genes.

They found that genes are clustered next to each other in the genome like beads on a string and organised along the chromosome approximately in the same order as the biosynthetic pathway – like a recipe written out in order of ingredients.

The avenacin gene cluster is located very close to the end of one arm of chromosome 1 of oat. It is arranged such that the early pathway genes are closer to the end of the chromosome (the telomere) and the late pathway genes are further in.

The team speculate this may be because gene mutations in the late avenacin pathway can result in the accumulation of compounds that negatively affect plant growth while mutations in the early pathway genes do not.

The orientation of these late pathway genes away from the telomere region means the plant is less likely be affected by toxins.

Comparison with the sequenced genomes of other cereals and grasses revealed that the avenacin cluster has formed since the divergence of oats from these other plant species which, the researchers presume, is due to a particular set of selective pressures.

Professor Anne Osbourn, joint corresponding author of the research along with Professor Bin Han said: “Our investigations show that plant genomes are able to shuffle and evolve their genes to enable them to adapt to particular stresses – in this case to soil-borne fungal diseases such as take-all. During this process, winning combinations of genes that provide a selective advantage can be recruited and relocated from around the genome and assembled into a cluster like beads on a string. This clustering will enable the winning gene-set to be passed on from generation to generation and mitigate against incomplete inheritance of the pathway genes with associated deleterious effects.”

The study offers the latest example of plant biosynthetic gene clusters for different types of compounds including drugs.

Investigations of how widespread these types of genomic organisations are in the Plant Kingdom hinges on the generation of new genome sequences for a wider variety of plants.

###

This should be made possible with the onset of new large-scale genome sequence initiatives such as the Earth BioGenome and Darwin Tree of Life Projects.

The study: Subtelomeric assembly of a multi-gene pathway for antimicrobial defense compounds in cereals, appears in Nature Communications http://dx.doi.org/10.1038/s41467-021-22920-8

Media Contact
Adrian Galvin
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41467-021-22920-8

Tags: Agricultural Production/EconomicsAgricultureBacteriologyBiochemistryClimate ChangeGenesGeneticsMicrobiologyMolecular BiologyMycology
Share12Tweet8Share2ShareShareShare2

Related Posts

Predicting Lung Infections After Brain Hemorrhage

Predicting Lung Infections After Brain Hemorrhage

August 2, 2025
blank

Impact of Morphology and Location on Aneurysms

August 2, 2025

Unraveling EMT’s Role in Colorectal Cancer Spread

August 2, 2025

Gut γδ T17 Cells Drive Brain Inflammation via STING

August 2, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    40 shares
    Share 16 Tweet 10
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    38 shares
    Share 15 Tweet 10

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Predicting Lung Infections After Brain Hemorrhage

Impact of Morphology and Location on Aneurysms

Unraveling EMT’s Role in Colorectal Cancer Spread

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.