• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Science

Wearable device reveals how seals prepare for diving

Bioengineer by Bioengineer
June 18, 2019
in Science
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Monica Arso Civil, Sea Mammal Research Unit.

A wearable non-invasive device based on near-infrared spectroscopy (NIRS) can be used to investigate blood volume and oxygenation patterns in freely diving marine mammals, according to a study publishing June 18 in the open-access journal PLOS Biology by J. Chris McKnight of the University of St. Andrews, and colleagues. The results provide new insights into how voluntarily diving seals distribute blood and manage the oxygen supply to their brains and blubber, yielding important information about the basic physiological patterns associated with diving.

In response to submersion in water, mammals show a suite of cardiovascular responses such as reduced heart rate and constriction of peripheral blood vessels. But investigating dive-by-dive blood distribution and oxygenation in marine mammals has up to now been limited by a lack of non-invasive technology that can be used in freely diving animals.

The authors hypothesized that NIRS could address this gap in knowledge by providing high-resolution relative measures of oxygenated and deoxygenated hemoglobin within specific tissues, which can in turn be used to estimate changes in blood volume. In the new study, McKnight and colleagues adapted NIRS technology for use on freely diving harbor seals to investigate blood volume and oxygenation patterns specifically in the brain and blubber, using a device that they dub the PortaSeal.

The authors used the PortaSeal to obtain detailed continuous NIRS data from four seals swimming freely in a quasi-natural foraging habitat. The device is superglued to the animals’ fur; either on their heads to measure cerebral blood, or on the shoulder to monitor peripheral circulation; it is then easily removed, and the data downloaded.

Intriguingly, the results showed that seals routinely constrict their peripheral blood vessels, accompanied by increased cerebral blood volume, approximately 15 seconds before submersion. These anticipatory adjustments suggest that blood redistribution in seals is under some degree of cognitive control and is not just a reflex response to submersion. Seals also routinely increase cerebral oxygenation at a consistent time during each dive, despite a lack of access to air.

The authors propose that the ability to track blood volume and oxygenation in different tissues using NIRS will enable a more accurate understanding of physiological plasticity in diving animals in what is an increasingly disturbed and exploited environment.

“Discovering that seals, which are physiologically fascinating animals, can seemingly actively exert control over their circulatory systems is really exciting,” Said Dr McKnight. “It gives a new perspective on the capacity to control the body’s fundamental physiological responses. Getting this insight with non-invasive wearable technology from the bio-medical field offers many exciting future research avenues. We can start to study organs, like the brain, of seals in the open ocean performing exceptional feats like diving to 2000m for 2hrs with heart rates as low as 2bpm, and yet somehow avoid brain trauma.”

###

Peer-reviewed / Experimental Study / Animals

In your coverage please use this URL to provide access to the freely available article in PLOS Biology: http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3000306

Citation: McKnight JC, Bennett KA, Bronkhorst M, Russell DJF, Balfour S, Milne R, et al. (2019) Shining new light on mammalian diving physiology using wearable near-infrared spectroscopy. PLoS Biol 17(6): e3000306. https://doi.org/10.1371/journal.pbio.3000306

Funding: This week received funding from the following: National Environmental Research Council National Capability funding to the Sea Mammal Research Unit (grant no. SMRU1001), Sea Mammal Research Unit Consulting (10 year anniversary award). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

Media Contact
J. Chris McKnight
[email protected]

Related Journal Article

http://dx.doi.org/10.1371/journal.pbio.3000306

Tags: BioinformaticsBiologyBiomechanics/BiophysicsBiotechnologyChemistry/Physics/Materials SciencesMarine/Freshwater BiologyPets/EthologyPhysiologyZoology/Veterinary Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Five or more hours of smartphone usage per day may increase obesity

July 25, 2019
IMAGE

NASA’s terra satellite finds tropical storm 07W’s strength on the side

July 25, 2019

NASA finds one burst of energy in weakening Depression Dalila

July 25, 2019

Researcher’s innovative flood mapping helps water and emergency management officials

July 25, 2019
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    316 shares
    Share 126 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    208 shares
    Share 83 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    140 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1305 shares
    Share 521 Tweet 326

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New Role for PPARs in Bovine Hepcidin Regulation

Diabetes Self-Care and Quality of Life in Ghana

AI’s Influence on Personalized Language Learning Strategies

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.