• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Wednesday, May 31, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Bioengineering

Viruses put to work making high-tech materials

Bioengineer by Bioengineer
November 9, 2013
in Bioengineering
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Viruses subvert their hosts to pump out masses of new viruses. In an unusual twist, a researcher reports in the May 3 issue of Science that she used genetically engineered viruses that are noninfectious to humans to mass produce tiny materials for next-generation optical, electronic and magnetic devices.

Viruses put to work making high-tech materials

“We’ve been looking at using genetic tools to grow semiconductor materials,” said author Angela M. Belcher , who this fall will join MIT as associate professor of materials science and engineering and biological engineering. “In this case, we took advantage of the viruses’ genetic makeup and physical shape to not only grow the material but also to help them assemble themselves into liquid crystal structures that are several centimeters long.”

Belcher and colleagues at the University of Texas at Austin are interested in using the processes by which nature makes materials to design new biological-electronic hybrid materials that could be used to assemble electronic materials at the nanoscale. Her research brings together inorganic chemistry, materials chemistry, biochemistry, molecular biology and electrical engineering. Belcher will be part of the MIT Department of Materials Science and Engineering and the Division of Biological Engineering .

Belcher’s approach is to use systems such as viruses that evolved over millions of years to work perfectly at the nanoscale, but to convince the viruses to work on technologically important materials. Belcher’s research team can evolve the viruses to work on the materials of interest over a period of months.

Building self-assembling and defect-free two- and three-dimensional materials on the nanometer scale is essential for the construction of new devices for optics and electronics. Researchers have been looking at ways to use organic materials to organize molecules of inorganic materials on the nanoscale. Fabricating viral films, Belcher said, may provide new pathways for organizing molecules to help create electronic, optical and magnetic materials.

“We showed that engineered viruses can recognize specific semiconductor surfaces, and these recognition properties can be used to organize molecules in inorganic nanocrystals, forming ordered arrays,” she said. “In this system, we can easily modulate the length of the bacteriophage (the type of virus) and the type of inorganic materials through genetic modification and selection. One can easily modulate and align different types of inorganic nanocrystals in 3D layered structures.”

This work is supported by the Army Research Office, the National Science Foundation and the Welch Foundation.

Story Source:

The above story is based on materials provided by MIT News Office.

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Why is the first Turkish bioengineering promotion website, Biyomuhendislik.com, so important?

February 4, 2023
blank

Robo-fish

September 19, 2016

Mice born from ‘tricked’ eggs

September 17, 2016

UCLA researchers use stem cells to grow 3-D lung-in-a-dish

September 16, 2016
Please login to join discussion

POPULAR NEWS

  • plants

    Plants remove cancer causing toxins from air

    39 shares
    Share 16 Tweet 10
  • Element creation in the lab deepens understanding of surface explosions on neutron stars

    36 shares
    Share 14 Tweet 9
  • Groundbreaking study uncovers first evidence of long-term directionality in the origination of human mutation, fundamentally challenging Neo-Darwinism

    115 shares
    Share 46 Tweet 29
  • How life and geology worked together to forge Earth’s nutrient rich crust

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New study highlights need for expanded application of prism adaptation treatment for spatial neglect

NIRISS instrument on Webb maps an ultra-hot Jupiter’s atmosphere

Biomicrofluidics selects groundbreaking platform to manipulate biospecimens for 2022 Best Paper Award

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 50 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In