• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 8, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

University of Houston researcher developing device to treat babies with blood disorders

Bioengineer by Bioengineer
May 7, 2020
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Adapting microfluidic technology to enable leukapheresis increases access to cell-based therapies

IMAGE

Credit: University of Houston

With severe blood disorders, such as leukemia, doctors often rely on leukapheresis, a procedure in which large machines extract whole blood from patients to separate white blood cells from the rest of the blood, which is then returned back to the patient. This procedure is generally used to urgently reduce a dangerously elevated white blood cell count, or to collect various white blood cell subsets for therapeutic purposes.

“Although well-tolerated by most adults and older children, leukapheresis in young children, weighing less than about 22 pounds, is technically challenging and clinically risky,” said biomedical engineering professor Sergey Shevkoplyas who has been awarded $1.6 million from the National Heart, Lung, and Blood Institute to develop pediatric-sized technology. Baylor College of Medicine collaborators include Fong W. Lam and Karen R. Rabin.

Leukapheresis is currently performed using centrifugation-based machines, which require a substantial amount of blood be taken out of a patient, putting small children at significantly higher risk of low blood pressure, catheter-related thrombosis, infections, severe anemia and even death.

Shevkoplyas is developing a new device that looks like a small plastic dish with many tiny channels cut into it. The channels are designed to separate blood cells by size, using a new cell separation approach called controlled incremental filtration (CIF). He and his colleagues are planning to adapt CIF to enable separation of white blood cells from flowing blood with high efficiency, minimal loss of red blood cells and platelets, and at flow rates on par with conventional leukapheresis.

“The ability to perform leukapheresis safely and effectively in these most vulnerable pediatric patients will significantly increase their access to a rapidly expanding range of highly effective cell-based therapies, thus having a potentially transformative impact on health and well-being of children worldwide.”

“Since all the existing machines were built for adults, we have to do something very special for babies, that’s what is inspiring us,” said Shevkoplyas.

###

Media Contact
Laurie Fickman
[email protected]

Original Source

https://www.uh.edu/news-events/stories/2020/may-2020/05072020-shevkoplyas-blood-leukapheresis-babies-adapting.php

Tags: Biomedical/Environmental/Chemical EngineeringBiotechnologycancerInternal MedicineMedicine/HealthParenting/Child Care/FamilyPediatricsPharmaceutical SciencesTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Czech Validation Confirms Accuracy of OGD-Q Tool

Czech Validation Confirms Accuracy of OGD-Q Tool

August 8, 2025
blank

MUC1-C Links APOBEC3 and Retrovirus Activation in NSCLC

August 8, 2025

iPad Eye Test Validated for Early Parkinson’s Detection

August 8, 2025

Updated Soil Testing Post-Fire: New Hazard Guidelines

August 8, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    129 shares
    Share 52 Tweet 32
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    76 shares
    Share 30 Tweet 19
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Ultrasound Advances in Pediatric Tonsil Pathology

SNU Researchers Unveil Innovative Wearable Blood Pressure Monitor Designed for Real-Time Continuous Monitoring, Attachment Similar to a Bandage

Czech Validation Confirms Accuracy of OGD-Q Tool

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.