• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Monday, October 2, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Two in one: FSU researchers develop polymer that can be adapted to high and low temperature extremes

Bioengineer by Bioengineer
September 7, 2023
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The modern world is filled with synthetic polymers, long-chained molecules designed by scientists to fill all manner of applications.

Researchers

Credit: Photo: Mark Wallheiser/FAMU-FSU College of Engineering

The modern world is filled with synthetic polymers, long-chained molecules designed by scientists to fill all manner of applications.

Researchers at FAMU-FSU College of Engineering have developed two closely related polymers that respond differently to high and low temperature thresholds, despite their similar design. The polymer pair could be used in applications in medicine, protein synthesis, protective coatings and other fields. Their work is published in Macromolecules.

“Typically, in order to have one thermal behavior, we have to prepare a polymer for that specific application, and if you want to have another extreme of polymer behavior, then you have to prepare a completely different polymer,” said coauthor Hoyong Chung, an associate professor in the FAMU-FSU College of Engineering. “But now, through this work, we have a single type of polymer that can be quickly adapted with minimal interference for both jobs.”

The researchers’ polymer is made with sulfoxide, a compound made of sulfur, oxygen and carbon molecules. One version contains an extra ingredient, a pair of hydrogen atoms known as a methylene group. This small structural variation is enough for each polymer to respond differently to variations in temperature.

Every mixture has critical temperatures above or below which the components will completely dissolve into a solution, regardless of the concentration of the various components in the mixture.

One version of the researchers’ polymer is soluble in water at low temperatures but becomes insoluble at higher temperatures. The other version displays the opposite behavior. It is insoluble at lower temperatures but dissolves when temperatures rise above a critical point.

“This contrasting behavior, which appeared with just a single minor change, was a surprising finding,” said postdoctoral researcher Biswajit Saha, the paper’s lead author. “It’s an exciting avenue for future research.”

Along with their development of this new, temperature-controllable polymer, the research team made other discoveries:

A new mechanism that governs a critical temperature threshold: Previous research showed that hydrogen atom bonds determined the temperature above which temperature-sensitive polymers dissolved in a solution, the so-called upper critical solution threshold. But Chung’s group found that the attraction between positively and negatively charged poles of different molecules — a process known as dipole-dipole interaction — also predicted the temperature at which their polymer would mix in water. Notably, his group has experimentally proved the presence of this interaction as a driving force of the thermal behavior.

Two-stage thermal behavior: Most solutions experience a single-phase change when they pass their temperature threshold. But the polymer developed by Chung’s team goes through phase changes in two stages. This feature could open potential new applications in medicine, such as a single medicine capsule that dissolves in the heat of a patient’s stomach in two stages, allowing for precise medicine delivery.

“We were fortunate to have these various insights with a single design,” Chung said. “A single polymer that can be ‘programmed’ to achieve different behaviors means this molecule can be easily adapted to different applications.”

This research was supported by the National Science Foundation.



Journal

Macromolecules

DOI

10.1021/acs.macromol.3c01048

Article Title

Uncharged Sulfoxide-Containing Homopolymers with Programmable Thermoresponsive Behaviors

Article Publication Date

27-Jul-2023

COI Statement

The authors declare no competing financial interest.

Share12Tweet8Share2ShareShareShare2

Related Posts

Schematic application of AEM with multiple cationic side alkyl chains

Synergistic work of cations in anion exchange membranes for OH- transport in fuel cells

September 30, 2023
16x9-33704D_0426_CPA_C-STEEL_WEB

Department of Energy funds new center for decarbonization of steelmaking

September 29, 2023

Ghent University’s research team envisions a bright future with active machine learning in chemical engineering

September 29, 2023

Teams invent a new metallization method of modified tannic acid photoresist patterning

September 29, 2023

POPULAR NEWS

  • blank

    Microbe Computers

    59 shares
    Share 24 Tweet 15
  • A pioneering study from Politecnico di Milano sheds light on one of the still poorly understood aspects of cancer

    35 shares
    Share 14 Tweet 9
  • Fossil spines reveal deep sea’s past

    34 shares
    Share 14 Tweet 9
  • Scientists go ‘back to the future,’ create flies with ancient genes to study evolution

    75 shares
    Share 30 Tweet 19

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Dense measurement network revealed high level of PM2.5 in Punjab due to crop residue burning and its transport to Haryana and Delhi NCR

Next-generation printing: precise and direct, using optical vortices

Researchers studied thousands of fertility attempts hoping to improve IVF

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 56 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In