• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Sunday, February 28, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Immunology

Tracking and forecasting outbreak risk of dengue, Zika and other Aedes-transmitted diseases

Bioengineer by Bioengineer
August 4, 2020
in Immunology
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

New system infuses ‘R0’ models with climate information to help public health agencies forecast places and times when environmental conditions might enhance transmission of dengue, Zika and other Aedes-borne diseases

IMAGE

Credit: International Research Institute for Climate and Society

Researchers led by Columbia University’s International Research Institute for Climate and Society and the Pan-American Health Organization have developed a system to monitor and forecast the environmental suitability of transmission of Zika, dengue fever, chikungunya and other diseases carried by species of Aedes mosquitos in the U.S. and neighboring regions.

Their results show that the forecasting skill of the new system is very good, with ‘hotspots’ of higher skill in Guatemala, Honduras, El Salvador, Cuba, Haiti, Dominican Republic, Jamaica and Puerto Rico.

The team published its findings in Scientific Reports.

The new system, called AeDES (https://aedes.iri.columbia.edu), is expected to help public-health authorities identify at-risk areas at least a month ahead of time, improving response and planning operations.

As a demonstration, the researchers used AeDES to predict that the current dengue outbreak in Central America will continue during the rest of 2020 and most likely will worsen. The compound effect of dengue and the ongoing COVID pandemic is expected to increase the number of coinfections in the region, the authors write.

Aedes-transmitted diseases cause more than 50 million infections every year worldwide, including in the United States, and cases have increased by 30-fold in the last 50 years because of changes in climate, land use and population.

These diseases, as with all mosquito-borne disease, are climate-sensitive-the risk of outbreaks goes up or down in part based on temperature, rainfall and humidity, which affect the life and reproductive cycle of the insects.

Supercharged climate-epidemiological modeling

“This is the first system for the region to monitor and forecast in real-time the conditions that are needed for transmission of Aedes-borne diseases,” said Ángel Muñoz, a climate scientist at IRI and lead author of the paper.

“We’ve combined multiple R0 epidemiological models with multiple climate models, as well as seven decades of historical climate data,” Muñoz said. (Epidemiologists use R0 to describe how contagious an infectious disease is. A value of 2, for example, means that a person who has the disease will infect an average of two other people.)

When climate centers make probabilistic forecasts of weather and climate, they use multimodel ensembles-which generate many simulations from many models so as to give a range of possible outcomes.

Muñoz and his colleagues adapted this approach for AeDES, combining four well-known R0 models with the 96 members (or total executions per month) currently in the North American Multi-Model Ensemble (NMME). As a result, the team generates 384 simulations each time it runs AeDES.

“Because we have such a huge sample to draw from, the probabilistic forecasts generated from these runs are really robust,” said Muñoz.

Public-health specialists can also use AeDES, which is powered by the IRI’s Data Library, to calculate and visualize the environmental suitability of disease transmission month-by-month going back to 1948, enabling them to better understand how climatic changes have been impacting different regions.

“The advantage of AeDES is that health ministry staff working at the country and subnational level will be able to adapt forecasts to their specific localities, allowing field actions to be much more targeted and tailored to their local conditions,” said co-author Ana Rivière-Cinnamond, from the Pan-American Health Organization. “Also, international and national health organizations could use the system to help identify future at-risk areas for vector-borne diseases-at border areas, for example, so as to alert authorities in advance to take action.”

In 2015, faced with a potential multi-country public-health emergency caused by the Zika virus, PAHO asked IRI to develop a system that used climate variables to try to stay a step ahead of future outbreaks. Based on the promising results of this initial collaboration (for more, read here, here and here), both PAHO and the National Oceanic and Atmospheric Administration’s Climate Program Office lent further support to IRI to develop and expand the system into what is now AeDES.

Muñoz and his team were also able to integrate the NextGen forecasting system and methodology (factsheet) developed as part of the Adapting Agriculture to Climate Today, for Tomorrow (ACToday) Columbia World Project.

“It’s a great example of how advances we were able to make because of Columbia’s commitment to ACToday-a project focused food security-led to advances for the public health community,” said Muñoz.

The two are not unrelated, Muñoz added. “Covid-19 has created a serious food-security crisis in Central America, and this is exacerbating the present dengue outbreak there. It is not only important to join forces between these two projects, it’s our duty to do so.”

###

This research was partially supported by ACToday, the first Columbia World Project, as well as by grants from the National Oceanic and Atmospheric Administration, the National Science Foundation, the National Institutes of Health and the Swedish Research Council.

Media Contact
Francesco Fiondella
[email protected]

Original Source

https://iri.columbia.edu/news/realtime-tracking-and-forecasting-of-outbreak-risk-of-dengue-zika-and-other-aedes-transmitted-diseases/

Related Journal Article

http://dx.doi.org/10.1038/s41598-020-69625-4

Tags: Atmospheric ScienceClimate ChangeClimate ScienceEcology/EnvironmentEpidemiologyInfectious/Emerging DiseasesPublic HealthTemperature-Dependent Phenomena
Share12Tweet7Share2ShareShareShare1

Related Posts

IMAGE

Research reveals how bacteria defeat drugs that fight cystic fibrosis

February 26, 2021
IMAGE

Lethal house lures reduce incidence of malaria in children

February 26, 2021

Openly available toolkit to help lab-based coronavirus research

February 25, 2021

NIH awards UC San Diego $33 million for five COVID-19 diagnostic projects

February 25, 2021

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    Terahertz accelerates beyond 5G towards 6G

    644 shares
    Share 258 Tweet 161
  • People living with HIV face premature heart disease and barriers to care

    82 shares
    Share 33 Tweet 21
  • Global analysis suggests COVID-19 is seasonal

    38 shares
    Share 15 Tweet 10
  • HIV: an innovative therapeutic breakthrough to optimize the immune system

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Public HealthCell BiologyGeneticsMaterialsChemistry/Physics/Materials SciencesBiologyEcology/EnvironmentTechnology/Engineering/Computer SciencecancerMedicine/HealthClimate ChangeInfectious/Emerging Diseases

Recent Posts

  • Sensing suns
  • Predicts the onset of Alzheimer’s Disease (AD) using deep learning-based Splice-AI
  • When foams collapse (and when they don’t)
  • UTA researcher explores effects of trauma at the cellular, tissue levels of the brain
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In