• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Saturday, March 25, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Science

To become, or not to become… a neuron

Bioengineer by Bioengineer
July 25, 2019
in Science
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scientists find a factor that makes neural stem cells ‘deaf’

Researchers led by Pierre Vanderhaeghen and Jérôme Bonnefont (VIB-KU Leuven and ULB) have unraveled a new mechanism controlling the switch between growth and differentiation of neural stem cells during brain development. They discovered a specific factor that makes stem cells ‘deaf’ to proliferative signals, which in turn causes them to differentiate into neurons and shape the marvelous complexity of our brain. The findings, published in this week’s edition of Neuron, shed new light on our understanding of brain developmental processes and have important implications for stem cell biology.

The brain is an incredibly complex organ consisting of billions of cells with a diverse range of functions. The mechanisms that orchestrate the formation of this intricate network during development have kept neuroscientists awake for decades.

One such neuroscientist is Prof. Pierre Vanderhaeghen (VIB-KU Leuven) whose team studies the development of the brain cortex, the outer layer of neuronal tissue that contributes in an essential way to who we are, as a species and as individuals.

“During neural development, a complex cocktail of signals determines the fate of neuronal progenitor cells,” explains Vanderhaeghen. “These stem cells receive many different ‘proliferative’ signals that instruct them to keep on dividing, generating more and more cells for the growing brain, but at some point they also need to stop doing this and differentiate. In other words, they need to specialize to become a specific type of brain cell.”

Turning deaf at the right time to mature into a nerve cell

Vanderhaeghen’s team set out to understand how this switch between growth and differentiation is regulated and identified a molecular factor, called Bcl6, that essentially makes progenitor cells “deaf” for the proliferative signals that tell them to keep on dividing, thereby ensuring that differentiation occurs efficiently.

Jérôme Bonnefont, a postdoctoral researcher in Vanderhaeghen’s lab, explains: “We used an extensive set of genomic and cellular tools and found that a protein called Bcl6 acts as a global repressor of a repertoire of signaling components and pathways that are known to promote self-renewal. Since Bcl6 is expressed only in specific subsets of progenitors and neurons during brain development, it allows for the precise fine-tuning of brain developmental processes.”

Fate transition, stem cells, and cancer

Vanderhaeghen is enthusiastic about the findings: “These results provide important insight into the molecular logic of so-called neurogenic conversion. Thanks to this ingenious switch, differentiation can occur in a robust way despite the presence of many, and sometimes even contradictory, extrinsic cues.”

“We made this discovery focusing on neural stem cells, but I would predict that similar factors act in many stem cells in the embryo and even in adults to ensure proper differentiation,” he continues. “This may be also important in the context of cancer biology, since stem cells and cancer cells usually respond to the same proliferative cues that are precisely inhibited by Bcl6.”

Future work should determine whether and how other repressors in other parts of the nervous system and body can modulate responsiveness to extrinsic cues in a similar way. This will teach us more about differentiation, not only during development, but also beyond in the adult brain and in cancer cells.

###

Publication

Cortical neurogenesis requires Bcl6-mediated transcriptional repression of multiple self-renewal-promoting extrinsic pathways, Bonnefont et al. Neuron 2019

Image

Cross section of a developing mouse brain with progenitor cells (in red) that start turning into neurons following Bcl6 expression (green) and mature as they reach the brain cortical layers, visualized in blue.Download here

Funding

This work was the result of a collaboration between the VIB KU Leuven, ULB, Belgium, and the Crick Institute, UK. It was funded by the European Research Council (ERC Adv Grant GENDEVOCORTEX), the Belgian FRS/FNRS, the VIB, the Queen Elizabeth Medical Foundation, the Interuniversity Attraction Poles Program (IUAP), the WELBIO Program of the Walloon Region, the AXA Research Fund, the Fondation ULB, the ERA-net ‘Microkin’, and EMBO.

Questions from patients

A breakthrough in research is not the same as a breakthrough in medicine. The realizations of VIB researchers can form the basis of new therapies, but the development path still takes years. This can raise a lot of questions. That is why we ask you to please refer questions in your report or article to the email address that VIB makes available for this purpose: [email protected] Everyone can submit questions concerning this and other medically-oriented research directly to VIB via this address.

Media Contact
Manon Van Nuffel
[email protected]

Tags: BiologyBiotechnologyMedicine/Healthneurobiology
Share12Tweet8Share2ShareShareShare2

Related Posts

Five or more hours of smartphone usage per day may increase obesity

July 25, 2019
IMAGE

NASA’s terra satellite finds tropical storm 07W’s strength on the side

July 25, 2019

NASA finds one burst of energy in weakening Depression Dalila

July 25, 2019

Researcher’s innovative flood mapping helps water and emergency management officials

July 25, 2019
Please login to join discussion

POPULAR NEWS

  • ChatPandaGPT

    Insilico Medicine brings AI-powered “ChatPandaGPT” to its target discovery platform

    65 shares
    Share 26 Tweet 16
  • Northern and southern resident orcas hunt differently, which may help explain the decline of southern orcas

    44 shares
    Share 18 Tweet 11
  • Skipping breakfast may compromise the immune system

    43 shares
    Share 17 Tweet 11
  • Insular dwarfs and giants more likely to go extinct

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Is early rhythm control in atrial fibrillation care cost-effective?

“Glassiness” and “blurriness” might explain the behavior of high-entropy superconductors

Illinois Tech Assistant Professor Ren Wang receives prestigious National Science Foundation Award

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 48 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In