• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Tuesday, April 13, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Teamwork makes light shine ever brighter

Bioengineer by Bioengineer
March 18, 2021
in Science News
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Combined energy sources return a burst of photons from plasmonic gold nanogaps

IMAGE

Credit: Natelson Research Group/Rice University

HOUSTON – (March 18, 2021) – If you’re looking for one technique to maximize photon output from plasmons, stop. It takes two to wrangle.

Rice University physicists came across a phenomenon that boosts the light from a nanoscale device more than 1,000 times greater than they anticipated.

When looking at light coming from a plasmonic junction, a microscopic gap between two gold nanowires, there are conditions in which applying optical or electrical energy individually prompted only a modest amount of light emission. Applying both together, however, caused a burst of light that far exceeded the output under either individual stimulus.

The researchers led by Rice physicist Douglas Natelson and lead authors Longji Cui and Yunxuan Zhu found the effect while following up experiments that discovered driving current through the gap increased the number of light-emitting “hot carrier” electrons in the electrodes.

Now they know that adding energy from a laser to the same junction makes it even brighter. The effect could be employed to make nanophotonic switches for computer chips and for advanced photocatalysts.

The details appear in the American Chemical Society journal Nano Letters.

“It’s been known for a long time that it’s possible to get a light emission from these tiny structures,” Natelson said. “In our previous work, we showed that plasmons play an important role in generating very hot charge carriers, equivalent to a couple of thousand degrees.”

Plasmons are ripples of charge that carry energy, and when triggered, flow across the surface of certain metals, including gold. In the voltage-driven mechanism, electrons tunnel through the gap, exciting plasmons, which leads to hot electrons recombining with electron “holes” and emitting photons in the process.

Even though the effect seemed dramatic at the time, it paled in comparison to the new discovery.

“I like the idea of ‘1+1=1,000,” Natelson said. “You do two things, each of which doesn’t give you much light in this energy range, but together, holy cow! There’s a lot of light coming out.”

The specific mechanisms are worthy of further study, he said. One possibility is that optical and electrical drives combine to enhance the generation of hot electrons. An alternative is that light emission gets a boost via anti-Stokes electronic Raman scattering. In that process, light input prompts already excited hot carriers to relax back to their ground states, releasing more photons.

“Something interesting is going on there, where each of these individual excitations is not enough to give you the amount of light coming out,” Natelson said. “But put them together and the effective temperature is much higher. That’s one possible explanation: that the light output is an exponential function of the temperature. Reaching that effective temperature takes hundreds of femtoseconds.

“The Raman mechanism is more subtle, where light comes in, grabs energy from the voltage, and even stronger light leaves,” he said. “That happens even faster, so a time-dependent experiment could probably help us figure out the dominant mechanism.

“The reason it’s neat is that you can, in principle, couple the electrical drive and light coming in to do all kinds of things,” Natelson said. “If the hot carrier picture is right, there’s the possibility of doing some interesting chemistry.”

Co-authors of the paper are Peter Nordlander, the Wiess Chair in Physics and Astronomy and a professor of electrical and computer engineering and of materials science and nanoengineering at Rice, and Massimiliano Di Ventra, a professor of physics at the University of California, San Diego. Cui, a former postdoctoral fellow at Rice, is now an assistant professor of mechanical engineering and materials science and engineering at the University of Colorado Boulder. Zhu is a graduate student at Rice. Natelson is chair and a professor of physics and astronomy and a professor of electrical and computer engineering and of materials science and nanoengineering.

###

The J. Evans Attwell Welch Fellowship, Rice’s Smalley-Curl Institute, the Robert A. Welch Foundation, the University of Colorado and the National Science Foundation supported the research.

Read the abstract at https://pubs.acs.org/doi/10.1021/acs.nanolett.1c00503.

This news release can be found online at https://news.rice.edu/2021/03/18/teamwork-makes-light-shine-ever-brighter/.

Follow Rice News and Media Relations via Twitter @RiceUNews.

Related materials:

Rice lab’s bright idea is pure gold: http://news.rice.edu/2020/06/29/rice-labs-bright-idea-is-pure-gold-2/

Natelson Research Group: https://natelson.web.rice.edu/group.html

Longji Cui: https://www.colorado.edu/mechanical/longji-cui

Nordlander Nanophotonics Group: http://nordlander.rice.edu

Massimiliano Di Ventra: https://diventra.physics.ucsd.edu

Rice Department of Physics and Astronomy: https://physics.rice.edu

Wiess School of Natural Sciences: https://naturalsciences.rice.edu

Image for download:

https://news-network.rice.edu/news/files/2021/03/0322_LIGHT-1-WEB.jpg

Electrical current and laser light combine at a gold nanogap to prompt a dramatic burst of light. The phenomenon could be useful for nanophotonic switches in computer chips and for advanced photocatalysts. (Credit: Natelson Research Group/Rice University)

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation’s top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,978 undergraduates and 3,192 graduate students, Rice’s undergraduate student-to-faculty ratio is just under 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for lots of race/class interaction and No. 1 for quality of life by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger’s Personal Finance.

Jeff Falk

713-348-6775

[email protected]

Mike Williams

713-348-6728

[email protected]

Media Contact
Jeff Falk
[email protected]

Original Source

https://news.rice.edu/2021/03/18/teamwork-makes-light-shine-ever-brighter/.

Related Journal Article

http://dx.doi.org/10.1021/acs.nanolett.1c00503

Tags: Chemistry/Physics/Materials SciencesElectrical Engineering/ElectronicsElectromagneticsHardwareIndustrial Engineering/ChemistryMaterialsNanotechnology/Micromachines
Share12Tweet7Share2ShareShareShare1

Related Posts

IMAGE

Research suggests SEC’s increasing focus on terrorism may limit financial oversight

April 12, 2021
IMAGE

Plastic planet: Tracking pervasive microplastics across the globe

April 12, 2021

Scientists watch 2D puddles of electrons emerge in a 3D superconducting material

April 12, 2021

Leader in global nitrogen cycle research Eric Davidson named Jefferson Science Fellow

April 12, 2021

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    Terahertz accelerates beyond 5G towards 6G

    852 shares
    Share 341 Tweet 213
  • Jonathan Wall receives $1.79 million to develop new amyloidosis treatment

    60 shares
    Share 24 Tweet 15
  • UofL, Medtronic to develop epidural stimulation algorithms for spinal cord injury

    56 shares
    Share 22 Tweet 14
  • A sturdier spike protein explains the faster spread of coronavirus variants

    43 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Medicine/HealthEcology/EnvironmentInfectious/Emerging DiseasesBiologyCell BiologycancerTechnology/Engineering/Computer ScienceMaterialsChemistry/Physics/Materials SciencesGeneticsClimate ChangePublic Health

Recent Posts

  • Research suggests SEC’s increasing focus on terrorism may limit financial oversight
  • Plastic planet: Tracking pervasive microplastics across the globe
  • Scientists watch 2D puddles of electrons emerge in a 3D superconducting material
  • Leader in global nitrogen cycle research Eric Davidson named Jefferson Science Fellow
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In