• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, November 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Bioengineering

Team finds hydrogen production in extreme bacterium

Bioengineer by Bioengineer
February 1, 2015
in Bioengineering
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A researcher at Missouri University of Science and Technology has discovered a bacterium that can produce hydrogen, an element that one day could lessen the world’s dependence on oil.

Dr. Melanie Mormile, professor of biological sciences at Missouri S&T, and her team discovered the bacterium “Halanaerobium hydrogeninformans” in Soap Lake, Washington. It can “produce hydrogen under saline and alkaline conditions in amounts that rival genetically modified organisms,” Mormile says.

“Usually, I tend to study the overall microbial ecology of extreme environments, but this particular bacterium has caught my attention,” Mormile says. “I intend to study this isolate in greater detail.”

Mormile, an expert in the microbial ecology of extreme environments, wasn’t searching for a bacterium that could produce hydrogen. Instead, she first became interested in bacteria that could help clean up the environment, especially looking at the extremophiles found in Soap Lake. An extremophile is a microorganism that lives in conditions of extreme temperature, acidity, alkalinity or chemical concentration. Living in such a hostile environment, “Halanaerobium hydrogeninformans” has metabolic capabilities under conditions that occur at some contaminated waste sites.

With “Halanaerobium hydrogeninformans,” she expected to find an iron-reducing bacterium and describe a new species. What she found was a new species of bacterium that can produce hydrogen and 1, 3-propanediol under high pH and salinity conditions that might turn out to be valuable industrially. An organic compound, 1, 3-propenediol can be formulated into industrial products including composites, adhesives, laminates and coatings. It’s also a solvent and can be used as antifreeze.

The infrastructure isn’t in place now for hydrogen to replace gasoline as a fuel for planes, trains and automobiles. But if hydrogen becomes an alternative to gasoline, “Halanaerobium hydrogeniformans,” mass-produced on an industrial scale, might be one solution – although it won’t be a solution anytime soon.

“It would be great if we got liters and liters of production of hydrogen,” Mormile says. “However, we have not been able to scale up yet.”

In her first single-author article, Mormile’s findings were featured in the Nov. 19 edition of Frontiers in Microbiology.
Mormile holds two patents for her work on the Soap Lake bacterium’s biohydrogen formation under very alkaline and saline conditions. Also named on the patents are Dr. Judy Wall, Curators’ Professor of Biochemistry and Joint Curators’ Professor of Molecular Microbiology & Immunology at the University of Missouri-Columbia, and her former lab members, Matthew Begemann and Dwayne Elias. A pending patent application, submitted along with Elias; Dr. Oliver Sitton, professor of chemical and biochemical engineering at Missouri S&T; and Daniel Roush, then a master’s student for Mormile, is for the conversion of glycerol to 1, 3-propanediol, also under hostile alkaline and saline conditions.

This patented and patent-pending technology is available for licensing through the Missouri S&T Center for Technology Transfer and Economic Development.

Story Source:

The above story is based on materials provided by Missouri University of Science and Technology.

Share13Tweet8Share2ShareShareShare2

Related Posts

Why is the first Turkish bioengineering promotion website, Biyomuhendislik.com, so important?

February 4, 2023

Robo-fish

September 19, 2016

Mice born from ‘tricked’ eggs

September 17, 2016

UCLA researchers use stem cells to grow 3-D lung-in-a-dish

September 16, 2016
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1295 shares
    Share 517 Tweet 323
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    203 shares
    Share 81 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    137 shares
    Share 55 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Surviving Post-NICU: Caring for Complex Infants

Eggplant Genotypes’ Resistance Mechanisms Against Leucinodes orbonalis

Unraveling CpG Island Methylation Through Read Bias Analysis

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.