• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, November 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Super salty, subzero Arctic water provides peek at possible life on other planets

Bioengineer by Bioengineer
July 12, 2019
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Zac Cooper/University of Washington

In recent years, the idea of life on other planets has become less far-fetched. NASA announced June 27 that it will send a vehicle to Saturn’s icy moon, Titan, a celestial body known to harbor surface lakes of methane and an ice-covered ocean of water, boosting its chance for supporting life.

On Earth, scientists are studying the most extreme environments to learn how life might exist under completely different settings, like on other planets. A University of Washington team has been studying the microbes found in “cryopegs,” trapped layers of sediment with water so salty that it remains liquid at below-freezing temperatures, which may be similar to environments on Mars or other planetary bodies farther from the sun.

At the recent AbSciCon meeting in Bellevue, Washington, researchers presented DNA sequencing and related results to show that brine samples from an Alaskan cryopeg isolated for tens of thousands of years contain thriving bacterial communities. The lifeforms are similar to those found in floating sea ice and in saltwater that flows from glaciers, but display some unique patterns.

“We study really old seawater trapped inside of permafrost for up to 50,000 years, to see how those bacterial communities have evolved over time,” said lead author Zachary Cooper, a UW doctoral student in oceanography.

Cryopegs were first discovered by geologists in Northern Alaska decades ago. This field site in Utqia?vik, formerly known as Barrow, was excavated in the 1960s by the U.S. Army’s Cold Regions Research and Engineering Laboratory to explore large wedges of freshwater ice that occur in the permafrost there. Subsurface brine was eventually collected from the site in the 2000s.

“The extreme conditions here are not just the below-zero temperatures, but also the very high salt concentrations,” said Jody Deming, a UW professor of oceanography who studies microbial life in the Arctic Ocean. “One hundred and forty parts per thousand — 14% — is a lot of salt. In canned goods that would stop microbes from doing anything. So there can be a preconceived notion that very high salt should not enable active life.”

It’s not fully known how cryopegs form. Scientists believe the layers might be former coastal lagoons stranded during the last ice age, when rain turned to snow and the ocean receded. Moisture evaporated from the abandoned seabed was then covered by permafrost, so the remaining briny water became trapped below a layer of frozen soil.

To access the subsurface liquids, researchers climb about 12 feet down a ladder and then move carefully along a tunnel within the ice. The opening is just a single person wide and is not high enough to stand in, so researchers must crouch and work together to drill during the four- to eight-hour shifts.

Deming describes it as “exhilarating” because of the possibility for discovery.

Samples collected in the spring of 2017 and 2018, geologically isolated for what researchers believe to be roughly 50,000 years, contain genes from healthy communities of bacteria along with their viruses.

“We’re just discovering that there’s a very robust microbial community, coevolving with viruses, in these ancient buried brines,” Cooper said. “We were quite startled at how dense the bacterial communities are.”

The extreme environments on Earth may be similar to the oceans and ice of other planets, scientist believe.

“The dominant bacterium is Marinobacter,” Deming said. “The name alone tells us that it came from the ocean – even though it has been in the dark, buried in frozen permafrost for a very long time, it originally came from the marine environment.”

Mars harbored an ocean of water in the past, and our solar system contains at least a half-dozen oceans on other planets and icy moons. Titan, the moon of Saturn that NASA will explore, is rich in various forms of ice. Studying life on Earth in frozen settings that may have similarities can prepare explorers for what kind of life to expect, and how to detect it.

###

The research was funded by the Gordon and Betty Moore Foundation to learn how bacteria and viruses coevolve in different marine environments. Other collaborators at UW are Josephine Rapp, a postdoctoral researcher in Oceanography, Max Showalter, a doctoral student in Oceanography, and Shelly Carpenter, a research scientist in Oceanography.

For more information, contact Cooper at [email protected] or Deming at [email protected].

Media Contact
Hannah Hickey
[email protected]

Original Source

http://www.washington.edu/news/2019/07/11/super-salty-subzero-arctic-water-provides-peek-at-possible-life-on-other-planets/

Tags: BiologyEarth ScienceEcology/EnvironmentGeology/SoilHydrology/Water ResourcesMarine/Freshwater BiologyMicrobiologyOceanographyPlanets/MoonsSpace/Planetary Science
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

New Study Uncovers Variation in Viral Risk Among Bat Species

November 3, 2025
16th International Congress on Skin Ageing & Challenges 2025: Pioneering Innovation, Strategic Approaches, and Translational Advances

16th International Congress on Skin Ageing & Challenges 2025: Pioneering Innovation, Strategic Approaches, and Translational Advances

November 3, 2025

Wireless Neural Implant Smaller Than a Grain of Salt Monitors Brain Activity

November 3, 2025

Big Brains Demand Warm Bodies and Larger Offspring, New Study Finds

November 3, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1297 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    204 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    137 shares
    Share 55 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Short Web-Based Dance Boosts Health in Older Adults

Evaluating Intermediate Care’s Effects on Healthcare Outcomes

Eco-Friendly LaVO4 Nanoparticles Boost Paracetamol Detection

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.