• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Small mussels in the Baltic are getting even smaller

Bioengineer by Bioengineer
October 27, 2020
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Thomas Tranåker

Blue mussels in the Baltic Sea are getting smaller with time but bigger in numbers, according to a new study from Stockholm University. Analyzing data from the last 24 years, the main reason for this appears to be changes in food quality. The type of phytoplankton that is available for blue mussels to eat can in turn be linked to our changing climate.

Blue mussels in the Baltic Sea are already small in their nature – the length of the mussels is about the length of a nail to the mere eye. In this study, the researchers discovered that blue mussels are now weighing around half of what they used to weigh in the 90’s, despite the mean length difference just being a few millimeters. But on the other hand there are now more mussels that are really tiny, sometimes as many as 1000 in one square meter compared to about 500 per square meter before.

Mussels compose the largest biomass of animals without a backbone in the Baltic, providing food to eider ducks and fish, for example. But because they are getting ‘smaller’ it means less food for the species feeding on them. It is also estimated that all blue mussels in the Baltic, together filter the entire waters of Baltic sea every year – and this is essential for cleaning the water from particles and helping to combat eutrophication – one of the Baltics biggest threats. Since the mussel size is affected it might therefore have effects on filtration rates, although this was not tested in this particular study:

“Even though an increase in the number of mussels to some extent may compensate for the smaller size, it is likely that important functions like filtration of the water has been reduced, which could lead to more turbid water” says Agnes Karlsson, Assistant Professor at Department of Ecology, Environment and Plant Sciences (DEEP) at Stockholm University.

The reason for the mussels getting smaller is likely altered mix of phytoplankton, now with greater quantities of cyanobacteria and particles from land. Warmer waters favour cyanobacteria, in turn causing increased summer blooms. Yet, the study found no direct role of increasing temperature for the decrease in mussel size. This means that indirect effects of climate change might be more important for mussels. The study is based on continuously monitored and collected samples of both mussels and phytoplankton from 1993 to 2016:

“We want to call attention to the benefits of long-term monitoring. If not for monitoring, we wouldn’t have known that this key species for the Baltic is on a slippery slope”, says Agnes Karlsson, Assistant Professor at Department of Ecology, Environment and Plant Sciences (DEEP) at Stockholm University.

The study highlights the importance of keeping an eagle eye perspective when considering how environmental changes affect key-organism in the long-run:

“There is often multiple and interacting factors responsible for changes in an organisms’ condition or population and all of this likely affects the entire ecosystem functioning” says Camilla Liénart, postdoc at Department of Ecology, Environment and Plant Sciences (DEEP) at Stockholm University.

###

The scientific publication titled Long-term changes in trophic ecology of blue mussels in a rapidly changing ecosystem doi: 10.1002/lno.11633 is published in the journal Limnology & Oceanography.

Contact details

Agnes Karlsson, Assistant Professor at Department of Ecology, Environment and Plant Sciences (DEEP) at Stockholm University. e-mail: [email protected] phone: 073 6386720

Camilla Liénart, postdoc at Department of Ecology, Environment and Plant Sciences (DEEP) at Stockholm University. e-mail: [email protected] phone: 072 152 1838

Media Contact
Agnes Karlsson
[email protected]

Related Journal Article

http://dx.doi.org/10.1002/lno.11633

Tags: BiologyClimate ChangeClimate ScienceEcology/EnvironmentMarine/Freshwater BiologyZoology/Veterinary Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Zoo Populations Crucial for Saving the Pacific Pocket Mouse

Zoo Populations Crucial for Saving the Pacific Pocket Mouse

August 22, 2025
Breakthrough Technique Unveils the Hidden Inner Workings of Our Cells in Stunning Detail

Breakthrough Technique Unveils the Hidden Inner Workings of Our Cells in Stunning Detail

August 21, 2025

How Cells Manage Stress: New Study Uncovers the Role of Waste Disposal Systems in Overinflated Balloons

August 21, 2025

Forces Within Tissues Sculpt Developing Organs

August 21, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

AI Uncovers ‘Self-Optimizing’ Mechanism in Magnesium-Based Thermoelectric Materials

Natural Disinfectants: Their Role in Prosthodontics and Oral Implantology

Brain Neurons Play Key Role in Daily Regulation of Blood Sugar Levels

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.