• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Sleeping sickness parasite uses multiple metabolic pathways

Bioengineer by Bioengineer
December 27, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Parasitic protozoa called trypanosomes synthesize sugars using an unexpected metabolic pathway called gluconeogenesis, according to a study published December 27 in the open-access journal PLOS Pathogens by David Horn of the University of Dundee in the UK, and colleagues. The authors note that this metabolic flexibility may be essential for adaptation to environmental conditions and survival in mammalian host tissues.

Trypanosomes cause human sleeping sickness and animal African trypanosomiases, which are a range of devastating but neglected tropical diseases affecting cattle, other livestock and horses. The mammalian stage of the parasite circulates in the bloodstream, a nutrient-rich environment with constant temperature and pH and high glucose concentration. Bloodstream-form African trypanosomes are thought to rely exclusively upon a metabolic pathway called glycolysis, using glucose as a substrate, for ATP production. In contrast to this view, Horn and colleagues show that bloodstream-form trypanosomes can use glycerol for ATP production and for gluconeogenesis — a metabolic pathway that results in the generation of glucose from non-carbohydrate carbon substrates.

The authors showed that even wild-type parasites, grown in the presence of glucose and glycerol, use both substrates and have active gluconeogenesis. Moreover, mammalian-infective parasites assemble a dense surface glycoprotein coat, the glycan components of which incorporate carbons from glycerol. Therefore, gluconeogenesis can be used to drive metabolism and metabolite biosynthesis. The results reveal that trypanosomes exhibit metabolic flexibility and adaptability, which is likely required for survival in multiple host tissue environments. According to the authors, this finding should be considered when devising metabolically targeted therapies.

The authors add, “The findings challenge a dogma that has persisted for more than 30 years; that these parasites rely solely on glucose and glycolysis for energy production in their mammalian hosts.”

###

In your coverage please use this URL to provide access to the freely available article in PLOS Pathogens: http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1007475

Citation:

Ková?ová J, Nagar R, Faria J, Ferguson MAJ, Barrett MP, Horn D (2019) Gluconeogenesis using glycerol as a substrate in bloodstream-form Trypanosoma brucei. PLoS Pathog 15(1): e1007475. https://doi.org/10.1371/journal.ppat.1007475

Funding: The work was funded by Wellcome Trust (https://wellcome.ac.uk/) Investigator Awards to DH (100320/Z/12/Z) and MAJF (101842/Z13/Z), with additional support from Wellcome Trust Centre Awards to Dundee (203134/Z/16/Z) and Glasgow (104111/Z/14/Z). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

Media Contact
David Horn
[email protected]

Related Journal Article

http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1007475
http://dx.doi.org/10.1371/journal.ppat.1007475

Tags: BiologyCell BiologyDisease in the Developing WorldInfectious/Emerging DiseasesMedicine/HealthParasitology
Share12Tweet8Share2ShareShareShare2

Related Posts

Tiny Fossils Reveal Major Insights into Arthropod Evolution

Tiny Fossils Reveal Major Insights into Arthropod Evolution

August 28, 2025
MicroRNA-25-3p Boosts Pancreatic Cancer Progression via EVs

MicroRNA-25-3p Boosts Pancreatic Cancer Progression via EVs

August 28, 2025

Exploring Histopathology in Peste des Petits Ruminants

August 28, 2025

Lipid Metabolism Key to Oat’s Heat Stress Response

August 28, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    149 shares
    Share 60 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Age Estimation via Pulp Involution in Brazilians

EDA Fibronectin: A Key Target in Ovarian Cancer

Tiny Fossils Reveal Major Insights into Arthropod Evolution

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.