• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Skinny cod and grey seal reveals troubling changes to food web in the Baltic Sea

Bioengineer by Bioengineer
June 11, 2019
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Olle Karlsson

“It is important that you understand how the food web works when managing a fishery. It is not enough to manage how the fish and fisheries are changing. The availability and quality of food is at least as important”, says Lena Bergström, researcher at the Department of Aquatic Resources at the Swedish Agricultural University.

In a collaboration between several universities, the authors of the study examined how the health and abundance of certain species has changed over two decades in the Bothnian Sea and the Baltic Proper. They investigated seal, cod, herring, sprat, isopods, amphipods and zooplankton; species that all occur at different levels in the Baltic Sea food web. The system is complex and several species can be both predators and prey. For example, herring eats zooplankton and some bottom fauna while the herring itself is eaten by cod and seal.

Shrinking habitats for bottom-living animals

The study primarily shows that there are links between the health of both cod and seal with the availability of bottom-living animals. Regarding the seals, the connection is indirect through that the herring it eats is influenced by the availability of the bottom-living animals. In both cases, there is a link to climate change and eutrophication:

“Oxygen levels in Baltic Sea have reduced since the 1990s, in big part due to eutrophication, creating vast oxygen-free areas. This leads to less living space for the bottom-living prey animals. This has, among other things, led to the fact that the isopods have become fewer and smaller, making them a poorer food choice for cod”, says Agnes Karlsson, lead author and researcher at the Department of Ecology, Environment and Plant Sciences (DEEP) at Stockholm University.

Extreme weather can degrade the situation

The fat content and the mean weight of herring in the Bothnian Sea have, according to the study, recently improved because of the supply of the bottom-living crustacean, the amphipod, has increased.

“However, the upturn is relative, because the amphipod in the Bothnian Sea collapsed in the early 2000s and what we now see are signs of a recovery”, says Agnes Karlsson.

The bottom-living crustaceans were almost eliminated after a period of extremely heavy rain that changed the water quality of the Bothnian Sea.

“With climate change it is likely that we will see similar extreme events more frequently in the future. If activities that lead to eutrophication are not reduced, oxygen shortage in the Baltic Sea will likely continue, leading to further reductions in the numbers of bottom-living animals. This can have far reaching effects for the economy, with reference to the fish species that are important commercially. To manage a fishery, we must also manage the environment and the food web”, says Lena Bergström.

###

The article “Linking consumer physiological status to food-web structure and prey food value in the Baltic Sea” is published in the scientific journal Ambio, A Journal of the Human Environment.

https://link.springer.com/article/10.1007/s13280-019-01201-1

Contact:

Lena Bergström, researcher, Department of Aquatic Resources (SLU Aqua), Swedish University of Agricultural Sciences, [email protected], +46 (0)10-478 4116

Agnes Karlsson, researcher, Department of Ecology, Environment and Plant Sciences (DEEP), Stockholm University, [email protected] +46 (0)8-16 12 46

Media Contact
Stockholm University Press Office
[email protected]

Original Source

https://link.springer.com/article/10.1007/s13280-019-01201-1

Tags: BiologyClimate ChangeEcology/EnvironmentFood/Food ScienceMarine/Freshwater BiologyNutrition/NutrientsPlant SciencesPollution/RemediationZoology/Veterinary Science
Share12Tweet8Share2ShareShareShare2

Related Posts

How CAX1’s N-Terminus Controls Its Activity

September 2, 2025

Exploring Wheat Heterosis Through Transcriptome Dynamics

September 2, 2025

New Tribe Identified in Tuberolachnini and Lachninae

September 2, 2025

Biochar from Prosopis farcta Boosts Quail Health, Neutralizes Aflatoxin

September 2, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    143 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Do people and monkeys see colors the same way?

    112 shares
    Share 45 Tweet 28

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

How CAX1’s N-Terminus Controls Its Activity

Tumor Depth Predicts Cervical Cancer Risk

Defective Neutrophil Exosomes Trigger Macrophage Activation

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.