• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Friday, June 9, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Bioengineering

Self-repairing running shoes 3D-printed from biological cells

Bioengineer by Bioengineer
March 1, 2014
in Bioengineering
Reading Time: 2 mins read
1
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

London designer and researcher Shamees Aden is developing a concept for running shoes that would be 3D-printed from synthetic biological material and could repair themselves overnight.

Self-repairing running shoes 3D-printed from biological cells

Shamees Aden’s Protocells trainer would be 3D-printed to the exact size of the user’s foot from a material that would fit like a second skin. It would react to pressure and movement created when running, puffing up to provide extra cushioning where required.

Aden developed the project in collaboration with Dr Martin Hanczyc, a professor at the University of Southern Denmark who specialises in protocell technology. Protocells are very basic molecules that are not themselves alive, but can be combined to create living organisms.

By mixing different types of these non-living molecules, scientists are attempting to produce artificial living systems that can be programmed with different behaviours, such as responsiveness to pressure, light and heat.

“The cells have the capability to inflate and deflate and to respond to pressure,” Aden told Dezeen at the Wearable Futures conference in London. “As you’re running on different grounds and textures it’s able to inflate or deflate depending on the pressure you put onto it and could help support you as a runner.”

Protocell-Trainers-by-Shamees-Aden

After a run, the protocells in the material would lose their energy and the shoes would be placed in a jar filled with protocell liquid, which would keep the living organisms healthy. The liquid could also be dyed any colour, causing the shoes to take on that colour as the cells rejuvenate.

“You would take the trainers home and you would have to care for it as if it was a plant, making sure it has the natural resources needed to rejuvenate the cells,” said the designer.

Aden added that her footwear project was intended to help a broader range of people comprehend the potential of protocell technology, and claimed the speculative results could become reality by 2050.

The project was presented at Wearable Futures, an event focusing on innovations in wearable technologies taking place in London from 10-11 December.

Story Source:

The above story is based on materials provided by dezeen.
Photograph by Sam J Bond

Share14Tweet9Share2ShareShareShare2

Related Posts

blank

Why is the first Turkish bioengineering promotion website, Biyomuhendislik.com, so important?

February 4, 2023
blank

Robo-fish

September 19, 2016

Mice born from ‘tricked’ eggs

September 17, 2016

UCLA researchers use stem cells to grow 3-D lung-in-a-dish

September 16, 2016
Please login to join discussion

POPULAR NEWS

  • plants

    Plants remove cancer causing toxins from air

    42 shares
    Share 17 Tweet 11
  • Element creation in the lab deepens understanding of surface explosions on neutron stars

    36 shares
    Share 14 Tweet 9
  • Deep sea surveys detect over five thousand new species in future mining hotspot

    35 shares
    Share 14 Tweet 9
  • How life and geology worked together to forge Earth’s nutrient rich crust

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Preparing the stage for 6G: A fast and compact transceiver for Sub-THz frequencies

New method takes the uncertainty out of oxide semiconductor layering

Researchers to explore potential of new treatment against vascular dementia

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 51 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In