• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Seeking the most effective polymers for personal protective equipment

Bioengineer by Bioengineer
November 17, 2020
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Some polymers can resist bacteria; can they be designed to work against viruses?

IMAGE

Credit: Morgan Alexander

WASHINGTON, November 17, 2020 — Personal protective equipment, like face masks and gowns, is generally made of polymers. But not much attention is typically given to the selection of polymers used beyond their physical properties.

To help with the identification of materials that will bind to a virus and speed its inactivation for use in PPE, researchers from the University of Nottingham, EMD Millipore, and the Philipps University of Marburg developed a high-throughput approach for analyzing the interactions between materials and viruslike particles. They report their method in the journal Biointerphases, from AIP Publishing.

“We’ve been very interested in the fact that polymers can have effects on cells on their surface,” said Morgan Alexander, an author on the paper. “We can get polymers, which resist bacteria, for example, without designing any particular clever or smart material with antibiotic in there. You just have to choose the right polymer. This paper extends this thinking to viral binding.”

The group created microarrays of 300 different monomer compositions of polymers representing a wide variety of characteristics. They exposed the polymers to Lassa and Rubella viruslike particles — particles with the same structure as their viral counterparts but without the infectious genomes activated — to see which materials were able to preferentially adsorb the particles.

“Knowing that different polymers bind and possibly inactivate virus to different degrees means we may be able to make recommendations. Should I use this existing glove material or that glove if I want the virus to bind to it and die and not fly into the air when I take the gloves off?” Alexander said.

Though this may seem like an obvious method for quickly screening large quantities of materials, the team’s interdisciplinary makeup makes them uniquely positioned to conduct such a study. The surface scientists have the capabilities to create large numbers of chemicals on microarrays, and the biologists have access to viruslike particles.

So far, the tests have only looked at viruslike particles of Lassa and Rubella, but the group is hoping to acquire a grant to look at viruslike particles of SARS-CoV-2, the COVID-19 virus.

Once a handful of the best-performing materials have been determined, the next step of the project will be to use live viruses to evaluate the viral infectious lifetime on the materials, taking into account real-world environmental conditions, like humidity and temperature. With enough data, a molecular model can be built to describe the interactions.

“Strong binding and quick denaturing of a virus on a polymer would be great,” said Alexander. “It remains to be seen whether the effect is significantly large to make a real difference, but we need to look to find out.”

###

The article, “Polymer microarrays rapidly identify competitive adsorbents of virus-like particles,” is authored by Andrew J. Blok, Pratik Gurnani, Alex Xenopoulos, Laurence Burroughs, Joshua Duncan, Richard A. Urbanowicz, Theocharis Tsoleridis, Helena Müller, Thomas Strecker, Jonathan K. Ball, Cameron Alexander, and Morgan P. Alexander. The article will appear in Biointerphases on Nov. 17, 2020 (DOI: 10.1116/6.0000586). After that date, it can be accessed at https://doi.org/10.1116/6.0000586.

ABOUT THE JOURNAL

Biointerphases, an AVS journal published by AIP Publishing, emphasizes quantitative characterization of biomaterials and biological interfaces. As an interdisciplinary journal, a strong foundation of chemistry, physics, biology, engineering, theory, and/or modelling is incorporated into originated articles, reviews, and opinionated essays. See https://avs.scitation.org/journal/bip.

ABOUT AVS

AVS is an interdisciplinary, professional society with some 4,500 members worldwide. Founded in 1953, AVS hosts local and international meetings, publishes four journals, serves members through awards, training and career services programs and supports networking among academic, industrial, government, and consulting professionals. Its members come from across the fields of chemistry, physics, biology, mathematics, engineering and business and share a common interest in basic science, technology development and commercialization related to materials, interfaces, and processing. https://www.avs.org

Media Contact
Larry Frum
[email protected]

Related Journal Article

http://dx.doi.org/10.1116/6.0000586

Tags: Atomic/Molecular/Particle PhysicsChemistry/Physics/Materials SciencesEpidemiologyInfectious/Emerging DiseasesMaterialsMedicine/HealthPolymer Chemistry
Share12Tweet8Share2ShareShareShare2

Related Posts

Diastereodivergent Routes to Multi-Substituted Cycloalkanes

Diastereodivergent Routes to Multi-Substituted Cycloalkanes

August 5, 2025
UofL Study Reveals Amplified Liver Damage from Combined Exposure to Alcohol and “Forever Chemicals”

UofL Study Reveals Amplified Liver Damage from Combined Exposure to Alcohol and “Forever Chemicals”

August 5, 2025

Zero-Dimensional Octahedral Metal Halides Synthesized via Solvent Incorporation

August 5, 2025

New Study Reveals How Diatoms Thrive and Illuminate the Southern Ocean

August 4, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Neuropsychiatric Risks Linked to COVID-19 Revealed

    71 shares
    Share 28 Tweet 18
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    46 shares
    Share 18 Tweet 12
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Diastereodivergent Routes to Multi-Substituted Cycloalkanes

Spatial Metabolomics Reveals Lasting Stroke Brain Changes

Rethinking Resilience in Post-Nuclear Food Trade Recovery

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.