• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Tuesday, January 19, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Bioengineering

Scientists Visualize How Cancer Chromosome Abnormalities Form in Living Cells

Bioengineer by Bioengineer
October 29, 2013
in Bioengineering
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

For the first time, scientists have directly observed events that lead to the formation of a chromosome abnormality that is often found in cancer cells. The abnormality, called a translocation, occurs when part of a chromosome breaks off and becomes attached to another chromosome. The results of this study, conducted by scientists at the National Cancer Institute (NCI), part of the National Institutes of Health, appeared Aug. 9, 2013, in the journal Science.

Chromosomes are thread-like structures inside cells that carry genes and function in heredity. Human chromosomes each contain a single piece of DNA, with the genes arranged in a linear fashion along its length.

Chromosome translocations have been found in almost all cancer cells, and it has long been known that translocations can play a role in cancer development. However, despite many years of research, just exactly how translocations form in a cell has remained a mystery. To better understand this process, the researchers created an experimental system in which they induced, in a controlled fashion, breaks in the DNA of different chromosomes in living cells. Using sophisticated imaging technology, they were then able to watch as the broken ends of the chromosomes were reattached correctly or incorrectly inside the cells.
Translocations are very rare events, and the scientists’ ability to visualize their occurrence in real time was made possible by recently available technology at NCI that enables investigators to observe changes in thousands of cells over long time periods. “Our ability to see this fundamental process in cancer formation was possible only because of access to revolutionary imaging technology,” said the study’s senior author, Tom Misteli, Ph.D., Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, NCI.

The scientists involved with this study were able to demonstrate that translocations can occur within hours of DNA breaks and that their formation is independent of when the breaks happen during the cell division cycle. Cells have built-in repair mechanisms that can fix most DNA breaks, but translocations occasionally occur.

To explore the role of DNA repair in translocation formation, the researchers inhibited key components of the DNA damage response machinery within cells and monitored the effects on the repair of DNA breaks and translocation formation. They found that inhibition of one component of DNA damage response machinery, a protein called DNAPK-kinase, increased the occurrence of translocations almost 10-fold. The scientists also determined that translocations formed preferentially between pre-positioned genes.
“These observations have allowed us to formulate a time and space framework for elucidating the mechanisms involved in the formation of chromosome translocations,” said Vassilis Roukos, Ph.D., NCI, and lead scientist of the study.

“We can now finally begin to really probe how these fundamental features of cancer cells form,” Misteli added.

Story Source:

The above story is based on materials provided by National Cancer Institute (NCI) at NIH.

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Robo-fish

September 19, 2016
blank

Mice born from ‘tricked’ eggs

September 17, 2016

UCLA researchers use stem cells to grow 3-D lung-in-a-dish

September 16, 2016

Sixteen MIT grad students named Siebel Scholars for 2017

September 16, 2016
Next Post
blank

Micro-Machines for the Human Body

An Argus II device implanted over the eye’s macula. Credit: UCSF

The first bionic eye to be approved for patients in the U.S. is getting software upgrades.

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    The map of nuclear deformation takes the form of a mountain landscape

    53 shares
    Share 21 Tweet 13
  • Blood pressure drug may be key to increasing lifespan, new study shows

    44 shares
    Share 18 Tweet 11
  • New drug form may help treat osteoporosis, calcium-related disorders

    39 shares
    Share 16 Tweet 10
  • People living with HIV face premature heart disease and barriers to care

    59 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

MaterialsGeneticsBiologyClimate ChangeChemistry/Physics/Materials SciencesMedicine/HealthInfectious/Emerging DiseasesEcology/EnvironmentTechnology/Engineering/Computer SciencecancerPublic HealthCell Biology

Recent Posts

  • A clinical trial provides encouraging results on ivermectin for reducing mild COVID-19
  • New approach emerges to better classify, treat brain tumors
  • New drug combination shows promise as powerful treatment for AML
  • Green med diet cuts non-alcoholic fatty liver disease by half – Ben-Gurion U. study
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In