• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, June 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Scientists unravel drivers of the global Zinc cycle in our oceans, with implications for a changing climate

Bioengineer by Bioengineer
June 13, 2024
in Chemistry
Reading Time: 4 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The important role of the Southern Ocean in global biological processes and the carbon cycle has been confirmed anew by a study published in Science this week that, for the first time based on field evidence, reveals the underappreciated role of inorganic Zinc particles in these cycles.

Team South Africa on board the SA Agulhas II for the 2019 cruise

Credit: Wiida Fourie-Basson

The important role of the Southern Ocean in global biological processes and the carbon cycle has been confirmed anew by a study published in Science this week that, for the first time based on field evidence, reveals the underappreciated role of inorganic Zinc particles in these cycles.

The Southern Ocean plays the greatest role in global phytoplankton productivity, which is responsible for absorbing atmospheric carbon dioxide. In these processes, Zinc, present in trace quantities in seawater, is an essential micronutrient critical to many biochemical processes in marine organisms and particularly for polar phytoplankton blooms.

When phytoplankton blooms perish, Zinc is released. But to date scientists were puzzled as there was an observed disjunct between Zinc and Phosphorus, another nutrient essential for life in the oceans, even though both nutrients are co-located in similar regions in phytoplankton. Instead, a strong (but inexplicable) coupling between Zinc and dissolved Silica is often seen.

Prof. Alakendra Roychoudhury, a specialist in environmental and marine biogeochemistry at Stellenbosch University (SU) and a co-author on the article, says they can now, for the first time, explain with confidence the biogeochemical processes driving the oceans’ Zinc cycle.

Since 2013, Roychoudhury’s research group in SU’s Department of Earth Sciences have joined three expeditions of South Africa’s polar research vessel, the SA Agulhas II. Crossing the vast Southern Ocean on its way to Antarctica in both summer and winter, the team collected sea water samples from the surface and deep ocean, as well as sediments.

Dr Ryan Cloete, co-first author on the paper and currently a postdoctoral fellow at the Laboratory of Environmental Marine Sciences (LEMAR) in France, participated in two of these expeditions: “Studying the Southern Ocean is so important as it acts as a central hub for global ocean circulation. Processes occurring in the Southern Ocean are imprinted on water masses which are then transported to the Atlantic, Indian and Pacific Oceans,” he explains.   

Working with researchers from Princeton University, the Universities of Chicago and California Santa Cruz, as well as the Max Planck Institute for Chemistry, the samples were subjected to detailed particle by particle analysis, using X-ray spectroscopic techniques at a synchrotron facility, which allowed them to study the samples at atomic and molecular level.

Unravelling the drivers of the global Zinc cycle in our oceans

In summer it seems that higher productivity leads to a greater abundance of Zinc in the organic fraction of the surface ocean, which can readily become available for uptake by phytoplankton. But the researchers also found high concentrations of Zinc associated with debris derived from rocks and earth, and from atmospheric dust, present in these samples.

In the open ocean, the interplay between Zinc’s association or dissociation from particles is pivotal for replenishing dissolved Zinc to support marine life.

Cloete explains their findings: “Due to poor growing conditions in winter, Zinc particles are literally ’scavenged’ by inorganic solids such as silica, abundantly available in the form of diatoms, as well as iron and aluminum oxides. Diatoms are microalgae – unicellular organisms with skeleton made of silica – thereby explaining the strong association between Zinc and Silica in the oceans.”

In other words, when Zinc is bound to an organic ligand it is easy for uptake by marine life such as phytoplankton. Zinc in a mineral phase, however, is not easy to dissolve and will therefore not be easily available for uptake. In this form, particulate Zinc can form large aggregates and sink to the deep ocean, where it becomes unavailable for uptake by phytoplankton.

Implications for changing climate

This understanding of the global Zinc cycle has important implications in the context of warming oceans, warns Roychoudhury: “A warmer climate increases erosion, leading to more dust in the atmosphere and consequently more dust being deposited into the oceans. More dust means more scavenging of Zinc particles, leading to less Zinc being available to sustain phytoplankton and other marine life.”

Cloete says their novel approach to studying the oceanic Zinc cycle now opens the door to investigating other important micronutrients: “Like Zinc, the distribution of Copper, Cadmiun, and Cobalt could also experience climate-induced changes in the future.”

For Roychoudhury, the findings reaffirm the Southern Ocean’s global influence in regulating the climate and the marine food web: “The earth system is intricately coupled through physical, chemical and biological processes with self-correcting feedback loops to modulate variability and negate climate change. Our findings are a prime example of this coupling where biochemical processes happening at the molecular level can influence global processes like the warming of our planet.”



Journal

Science

DOI

10.1126/science.adh8199

Method of Research

Data/statistical analysis

Subject of Research

Not applicable

Article Title

Biogenic-to-lithogenic handoff of particulate Zn Impacts the Zn-cycle in the Southern Ocean

Article Publication Date

14-Jun-2024

COI Statement

The authors declare that they have no competing interests.

Share12Tweet8Share2ShareShareShare2

Related Posts

Mahmoud Asmar

Rewrite Physics professor receives Department of Energy grant to explore light-matter interactions this news headline for the science magazine post

June 13, 2025
a range of instruments flown on balloons high above Antarctica

Rewrite Strange radio pulses detected coming from ice in Antarctica this news headline for the science magazine post

June 13, 2025

Rewrite The quantum mechanics of chiral spin selectivity this news headline for the science magazine post

June 13, 2025

Rewrite New biomaterial developed by NUS researchers shows how ageing in the heart could be reversed this news headline for the science magazine post

June 13, 2025

POPULAR NEWS

  • Green brake lights in the front could reduce accidents

    Study from TU Graz Reveals Front Brake Lights Could Drastically Diminish Road Accident Rates

    158 shares
    Share 63 Tweet 40
  • New Study Uncovers Unexpected Side Effects of High-Dose Radiation Therapy

    74 shares
    Share 30 Tweet 19
  • Pancreatic Cancer Vaccines Eradicate Disease in Preclinical Studies

    68 shares
    Share 27 Tweet 17
  • How Scientists Unraveled the Mystery Behind the Gigantic Size of Extinct Ground Sloths—and What Led to Their Demise

    64 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Rewrite Two frontiers: Illinois experts combine forces to develop novel nanopore sensing platform this news headline for the science magazine post

Rewrite Review of active distribution network reconfiguration: Past progress and future directions this news headline for the science magazine post

Rewrite University of Cincinnati structural biology research published in prestigious PNAS this news headline for the science magazine post

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.