• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Sunday, February 28, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Science

Scientists identify genetic mechanism involved in how females inherit traits

Bioengineer by Bioengineer
February 20, 2019
in Science
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Research could help reduce females’ susceptibility to several diseases, such as Fragile X and Rett syndromes

IMAGE

Credit: Zheng lab, UC Riverside.


As many know, females have two X chromosome while males have one X and one Y chromosome.

Perhaps less known is that female cells randomly and permanently shut off one of the X chromosomes during embryonic development through a process called X chromosome inactivation, or XCI.  Just how XCI occurs has remained unclear — until now.

New research performed on mouse female embryonic stem cells by scientists at the University of California, Riverside, traces the origin of XCI to an RNA splicing mechanism.

Occurring in every human cell and almost all human genes, RNA splicing copies and pastes genetic fragments scattered among the genome to create a meaningful or functional genetic message.

In the case of XCI, the researchers found that a special splicing event occurs prior to XCI and in association with the X chromosome chosen for inactivation, but not with the other X chromosome. This special splicing event happens in “Xist,” a gene expressed only in females and the inactive X chromosome.

Scientists have accepted Xist induction at the onset of XCI as the molecular trigger for initiating XCI, but how Xist is induced is not entirely clear. Also unknown is how Xist remains repressed prior to XCI. The new study shows that Xist is largely unspliced, thus unfunctional, before XCI. Upon differentiation of embryonic stem cells, Xist becomes spliced, and thus functional to kick-start subsequent events to induce XCI.

Study results appear in the journal Nucleic Acids Research.

“XCI ensures that females express similar dosages of X chromosome gene products as males do,” said Sika Zheng, an assistant professor of biomedical sciences in the UCR School of Medicine, who led the research. “This inactivation ensures, too, that, like males, females have a balanced expression between the X chromosome and autosomes — chromosomes that are not sex chromosomes.”

Zheng explained that XCI happens in every female, and its regulation influences whether a daughter inherits a trait from her father or her mother. It also determines females’ susceptibility to various diseases, such as Fragile X syndrome and Rett syndrome.

“The splicing mechanism is fundamental to understanding trait inheritance in females,” he said. “If we could manipulate which X chromosome to inactivate through splicing, we might be able to alter females’ expression of their genetic traits and their susceptibility to diseases without altering their genomes. Regulating Xist transcription has been at the center of this research field for a long time. Our discovery should draw scientists’ attention to splicing.”

###

The research was funded by the National Institutes of Health. Zheng was joined in the study by Cheryl Stork, first author of the research paper, as well as Zhelin Li and Lin Lin.

Media Contact
Iqbal Pittalwala
[email protected]
951-827-6050

Tags: BiologyBiotechnologyDevelopmental/Reproductive BiologyGenesGeneticsMedicine/HealthneurobiologyPublic HealthSex-Linked Conditions
Share12Tweet7Share2ShareShareShare1

Related Posts

Five or more hours of smartphone usage per day may increase obesity

July 25, 2019
IMAGE

NASA’s terra satellite finds tropical storm 07W’s strength on the side

July 25, 2019

NASA finds one burst of energy in weakening Depression Dalila

July 25, 2019

Researcher’s innovative flood mapping helps water and emergency management officials

July 25, 2019

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    Terahertz accelerates beyond 5G towards 6G

    638 shares
    Share 255 Tweet 160
  • People living with HIV face premature heart disease and barriers to care

    82 shares
    Share 33 Tweet 21
  • Global analysis suggests COVID-19 is seasonal

    38 shares
    Share 15 Tweet 10
  • HIV: an innovative therapeutic breakthrough to optimize the immune system

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Technology/Engineering/Computer ScienceMedicine/HealthcancerInfectious/Emerging DiseasesEcology/EnvironmentMaterialsCell BiologyClimate ChangeBiologyGeneticsPublic HealthChemistry/Physics/Materials Sciences

Recent Posts

  • Predicts the onset of Alzheimer’s Disease (AD) using deep learning-based Splice-AI
  • When foams collapse (and when they don’t)
  • UTA researcher explores effects of trauma at the cellular, tissue levels of the brain
  • Picture books can boost physical activity for youth with autism
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In