• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, January 12, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Scientists develop surface acidity — and selectivity-tunable manganese oxide catalyst

Bioengineer by Bioengineer
May 28, 2019
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: JIA Xiuquan

A research group led by Prof. XU Jie from the Dalian Institute of Chemical Physics (DICP) of the Chinese Academy of Sciences has developed a surface acidity- and selectivity-tunable manganese oxide catalyst using a surface modification technique. Their findings were published in Nature Communications.

Surface properties of transition metal oxides play a pivotal role in their catalytic applications. Despite numerous reports investigating the surface chemisorption of organic molecules on metal oxides, it is not clear how adsorption of organic modifiers can be exploited to optimize the catalytic properties of metal oxides.

The researchers used enolic acetylacetones to modify the surface Lewis acid properties of manganese oxide catalysts. This enabled rational control of the oxidation selectivities of structurally diverse arylmethyl amines so they could switch from nitriles to imines.

The stable modification of acetylacetones strongly influenced the redox-acid cooperative catalysis of MnOx by suppressing the surface Lewis acidity of the catalysts. In the aerobic oxidation reaction of benzylamine, using unmodified MnOx as catalyst, nitrile was obtained with a yield of 86.5%. In contrast, the MnOx modified by acetylacetones produced imine with a yield of 90.6% under identical conditions.

The current study demonstrates an example of a selectivity-switchable metal oxide catalyst with an organic switch to tune its surface properties. This may contribute to future insights into the surface structure-activity relationships of metal oxide catalysts.

###

Media Contact
Wang Yongji
[email protected]

Original Source

http://english.cas.cn/

Related Journal Article

http://dx.doi.org/10.1038/s41467-019-10315-9

Tags: Chemistry/Physics/Materials SciencesMaterials
Share13Tweet7Share2ShareShareShare1

Related Posts

blank

Advancing Alkene Chemistry: Homologative Difunctionalization Breakthrough

January 8, 2026
Biocompatible Ligand Enables Safe In-Cell Protein Arylation

Biocompatible Ligand Enables Safe In-Cell Protein Arylation

January 8, 2026

Monovalent Pseudo-Natural Products Boost IDO1 Degradation

January 7, 2026

Catalytic Enantioselective [1,2]-Wittig Rearrangement Breakthrough

January 7, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    154 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    146 shares
    Share 58 Tweet 37
  • Robotic Ureteral Reconstruction: A Novel Approach

    69 shares
    Share 28 Tweet 17
  • Impact of Vegan Diet and Resistance Exercise on Muscle Volume

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Unveiling Complex Chromosomal Insertions with Karyotyping

Enhanced Coherent Ranging via Phase-Multiplied Interferometry

Adaphostin Triggers Oxidative Stress in Esophageal Cancer

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.