• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Tuesday, March 9, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Bioengineering

Scientists create precursors to human egg and sperm

Bioengineer by Bioengineer
December 26, 2014
in Bioengineering, Stem Cells
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scientists at the University of Cambridge working with the Weizmann Institute have created primordial germ cells – cells that will go on to become egg and sperm – using human embryonic stem cells. Although this had already been done using rodent stem cells, the study, published today in the journal Cell, is the first time this has been achieved efficiently using human stem cells.

Scientists create precursors to human egg and sperm

This is an ’embryoid’ at the start of the appearance of SOX17 positive cells (green cells), which depict birth of the human germ cell lineage. Photo Credit: Walfred Tang, University of Cambridge

When an egg cell is fertilised by a sperm, it begins to divide into a cluster of cells known as a blastocyst, the early stage of the embryo. Within this ball of cells, some cells form the inner cell mass – which will develop into the foetus – and some form the outer wall, which becomes the placenta. Cells in the inner cell mass are ‘reset’ to become stem cells – cells that have the potential to develop into any type of cell within the body. A small number of these cells become primordial germ cells (PGCs) – these have the potential to become germ cells (sperm and egg), which in later life will pass on the offspring’s genetic information to its own offspring.

“The creation of primordial germ cells is one of the earliest events during early mammalian development,” says Dr Naoko Irie, first author of the paper from the Wellcome Trust/Cancer Research UK Gurdon Institute at the University of Cambridge. “It’s a stage we’ve managed to recreate using stem cells from mice and rats, but until now few researches have done this systematically using human stem cells. It has highlighted important differences between embryo development in humans and rodents that may mean findings in mice and rats may not be directly extrapolated to humans.”

Professor Surani at the Gurdon Institute, who led the research, and his colleagues found that a gene known as SOX17 is critical for directing human stem cells to become PGCs (a stage known as ‘specification’). This was a surprise as the mouse equivalent of this gene is not involved in the process, suggesting a key difference between mouse and human development. SOX17 had previously been shown to be involved in directing stem cells to become endodermal cells, which then develop into cells including those for the lung, gut and pancreas, but this is the first time it has been seen in PGC specification.

The group showed that PGCs could also be made from reprogrammed adult cells, such as skin cells, which will allow investigations on patient-specific cells to advance knowledge of the human germline, infertility and germ cell tumours. The research also has potential implications for understanding the process of ‘epigenetic’ inheritance. Scientists have known for some time that our environment – for example, our diet or smoking habits – can affect our genes through a process known as methylation whereby molecules attach themselves to our DNA, acting like dimmer switches to increase or decrease the activity of genes. These methylation patterns can be passed down to the offspring.

Professor Surani and colleagues have shown that during the PGC specification stage, a programme is initiated to erase these methylation patterns, acting as a ‘reset’ switch. However, traces of these patterns might be inherited – it is not yet clear why this might occur.

“Germ cells are ‘immortal’ in the sense that they provide an enduring link between all generations, carrying genetic information from one generation to the next,” adds Professor Surani. “The comprehensive erasure of epigenetic information ensures that most, if not all, epigenetic mutations are erased, which promotes ‘rejuvenation’ of the lineage and allows it to give rise to endless generations. These mechanisms are of wider interest towards understanding age-related diseases, which in part might be due to cumulative epigenetic mutations.”

The research was funded by the Wellcome Trust and BIRAX (the Britain Israel Research and Academic Exchange Partnership).

Story Source:

The above story is based on materials provided by University of Cambridge.

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Human stem cells treat spinal cord injury side effects in mice

October 4, 2016
blank

Research into fly development provides insights into blood vessel formation

September 30, 2016

Fertility genes required for sperm stem cells

September 28, 2016

Regulatory RNA essential to DNA damage response

September 27, 2016

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    Terahertz accelerates beyond 5G towards 6G

    703 shares
    Share 281 Tweet 176
  • People living with HIV face premature heart disease and barriers to care

    86 shares
    Share 34 Tweet 22
  • HIV: an innovative therapeutic breakthrough to optimize the immune system

    36 shares
    Share 14 Tweet 9
  • Global analysis suggests COVID-19 is seasonal

    39 shares
    Share 16 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Chemistry/Physics/Materials SciencesInfectious/Emerging DiseasesGeneticsTechnology/Engineering/Computer SciencecancerPublic HealthMedicine/HealthEcology/EnvironmentBiologyCell BiologyMaterialsClimate Change

Recent Posts

  • Research pinpoints unique drug target in antibiotic resistant bacteria
  • How fast is the universe expanding? Galaxies provide one answer.
  • Young white-tailed deer that disperse survive the same as those that stay home
  • Complement inhibition reverses mental losses in preclinical traumatic brain injury models
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In