• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Monday, June 27, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

SARS-CoV-2 spike mutation L452R evades human immune response and enhances infectivity

Bioengineer by Bioengineer
July 20, 2021
in Health
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Dr. Chihiro Motozono

An international team of researchers led by Kumamoto and Tokyo Universities (Japan) have shown that the L452R mutation of the SARS-CoV-2 spike protein, which is common to two mutant strains (Epsilon and Delta), is involved in cellular immunity evasion via the human leukocyte antigen (HLA) A24, and enhances viral infectivity. HLA-A24 is one of the most prominent HLA-class I alleles, especially in East/Southeast Asian populations, which might make them particularly vulnerable to coronavirus variants with this mutation.

The ongoing novel coronavirus (SARS-CoV-2 or COVID-19) pandemic has, as of June 2021, infected over 150 million and killed over 3.5 million people worldwide. Vaccination drives around the world are currently underway, but there are still many unknowns, including the principles of infection pathogenesis, the principles viral replication, and the relationship between immune evasion and epidemic dynamics.

Acquired immunity can be broadly classified into humoral immunity mediated by neutralizing antibodies and cellular immunity mediated by helper and killer T cells. SARS-CoV-2 “variants of concern”, such as the Alpha and Beta variants, have been studied worldwide for the possibility of humoral immunity evasion. However, cellular immunity evasion has not been reported.

In this study, the research group first used immunological experiments to demonstrate that an antigen derived from the SARS-CoV-2 spike protein is strongly recognized by HLA-A24-restricted cellular immunity, which is often found in Japanese people. They then performed a large-scale (>750,000) sequence analysis of SARS-CoV-2 strains and found several important mutations in the spike protein region typically recognized by HLA-A24. These are the Y453F spike mutations found in strain B.1.1.298, which was prevalent in Denmark in 2020, and the L452R mutation in B.1.427/429 and B.1.617 (commonly known as the Epsilon and Delta variants respectively) that are currently spreading around the world. Further immunological experiments demonstrated that these mutations escape HLA-A24 cellular immunity. The researchers believe that this is the first time a “variant of concern” has been demonstrated to evade cellular immunity.

The Y453F and L452R mutations were located in the receptor binding domain of the SARS-CoV-2 spike protein, which are crucial for gaining entry into host cells. Researchers thus examined the effects of these mutations on the infection and replication efficiency of the virus. They found that the L452R mutation enhances its membrane fusion activity, infectivity, and viral replication.

“The L452R mutation is a hallmark of the Delta variant that is currently spreading worldwide, and in Japan, about 60% of the population have HLA-A24, which is responsible for cellular immunity. The L452R mutation not only evades the HLA-A24 cellular immunity but can also enhance the infectivity of the virus,” said the leader of immunology in the study, Dr. Chihiro Motozono.” We have been carefully investigating the immune response against emerging SARS-CoV-2 variants in real time to monitor how the mutations affect human immunity and viral infectivity.”

###

This research was posted in Cell Host & Microbe on 14 June 2021.

Source: Motozono, C., Toyoda, M., Zahradnik, J., Saito, A., Nasser, H., Tan, T. S., … Sato, K. (2021). SARS-CoV-2 spike L452R variant evades cellular immunity and increases infectivity. Cell Host & Microbe. doi:10.1016/j.chom.2021.06.006

Media Contact
J. Sanderson & N. Fukuda
[email protected]

Original Source

https://ewww.kumamoto-u.ac.jp/en/news/471/

Related Journal Article

http://dx.doi.org/10.1016/j.chom.2021.06.006

Tags: BiochemistryCell BiologyImmunology/Allergies/AsthmaInfectious/Emerging DiseasesMedicine/HealthPhysiologyVaccinesVirology
Share13Tweet8Share2ShareShareShare2

Related Posts

Novel sewage treatment

Novel sewage treatment system removes up to 70% of nitrogen that would otherwise be discarded into nature

June 24, 2022
Maria Argos

Arsenic in private well water contributes to low birth weight even at low levels

June 24, 2022

Oral antiviral drug effective against respiratory syncytial virus (RSV) identified by Biomedical Sciences researchers

June 24, 2022

Stop for migration!

June 24, 2022
Please login to join discussion

POPULAR NEWS

  • Pacific whiting

    Oregon State University research finds evidence to suggest Pacific whiting skin has anti-aging properties that prevent wrinkles

    37 shares
    Share 15 Tweet 9
  • University of Miami Rosenstiel School selected for National ‘Reefense’ Initiative focusing on Florida and the Caribbean

    35 shares
    Share 14 Tweet 9
  • Saving the Mekong delta from drowning

    37 shares
    Share 15 Tweet 9
  • Sharks may be closer to the city than you think, new study finds

    34 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

VehiclesViolence/CriminalsUrbanizationUniversity of WashingtonWeather/StormsVaccinesVirologyUrogenital SystemZoology/Veterinary ScienceVaccineVirusWeaponry

Recent Posts

  • USDA-ARS releases genome of the voracious desert locust
  • Repairing nature with DNA technology
  • The Sussex researchers who used international collaboration and 3D printing to stem PPE shortages in Nigeria
  • Predicting the future: A quick, easy scan can reveal late-life dementia risk
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....