• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Researchers invent method to ‘sketch’ quantum devices with focused electrons

Bioengineer by Bioengineer
December 21, 2020
in Science News
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Technique is 10,000 faster than previous methods, and can create active nanostructured gates directly below two-dimensional materials such as graphene

IMAGE

Credit: Muqing Yu

PITTSBURGH–It has long been a dream to invent new materials from the “top down” choosing which atoms go where to engineer properties of interest. A technique created by researchers out of the Department of Physics and Astronomy enables them to “sketch” patterns of electrons into a programmable quantum material–lanthanum aluminate/strontium titanate or “LAO/STO”. Using this approach, they can create quantum devices and with feature sizes comparable to the spacing between electrons, and even “sketch” artificial lattices for electrons to traverse, with extremely high precision.

To develop this capability, the researchers repurposed an electron beam lithography instrument, which is ordinarily used to create nanostructures by exposing a resist that hardens into a mask, enabling layers of material to be subsequently added or removed. Instead of operating the instrument at its usual value of 20,000 Volts, the researchers dialed it down to only a few hundred volts, where the electrons could not penetrate the surface of their oxide material, and instead–without any resist–catalyze a surface reaction that renders the LAO surface positively charged, and the LAO/STO interface locally conductive. The electron beam is 10,000 times faster at writing compared with atomic-force microscope-based lithography, without losing spatial resolution or ability to be reprogrammed. In addition, the authors showed that this technique can program the LAO/STO interface when integrated with other 2D layers such as graphene.

The team is led by Jeremy Levy, a Distinguished Professor of Condensed Matter Physics and director of the Pittsburgh Quantum Institute, describe the method in the paper, “Nanoscale control of LaAIO3/SrTiO3 metal-insulator transition using ultra-low-voltage electron-beam lithography.” The paper was published in Applied Physics Letter on Dec. 21.

Dengyu Yang, a graduate student who developed the technique and is lead author on the paper, compared it to “imaging a sketch on a canvas with a pen.”

“In this case, the canvas is LAO/STO and the “pen” is a beam of electrons. This powerful ability allows us to participate with more complex structures and expend the device from one dimension to two dimensions,” she said.

Yang and Levy said the discovery could have implications in the fields of quantum transport and quantum simulation.

“We are very interested in using this technique to programmatically create new families of two-dimensional electronic materials based on arrays of artificial atoms written using this technique. Our group recently published a paper in Science Advances demonstrating the idea of quantum simulation in one-dimensional devices, using the AFM method. This new EBL-based technique will enable us to perform quantum simulation in two dimensions,” said Levy.

In addition to Yang and Levy, Pitt collaborators on the paper include research professor Patrick Irvin and graduate students Shan Hao, Qing Guo, Muqing Yu, Yang Hu, Assistant Professor Jun Chen from the Swanson School of Engineering. Additional affiliations include the Department of Materials Science and Engineering at University of Wisconsin-Madison and Pittsburgh Quantum Institute.

###

Media Contact
[email protected]
[email protected]

Tags: Atomic PhysicsAtomic/Molecular/Particle PhysicsChemistry/Physics/Materials SciencesElectromagneticsIndustrial Engineering/ChemistryMaterialsMolecular PhysicsNanotechnology/MicromachinesParticle Physics
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Revolutionizing Chinese Art Textbooks with Enhanced NMT

November 26, 2025
Optimizing Moxifloxacin Nanoparticles with Innovative Technique

Optimizing Moxifloxacin Nanoparticles with Innovative Technique

November 26, 2025

Baseline Microplastics Mask Impact of Recycled Fertilizers

November 26, 2025

Glucose Disposal Rate Linked to Diabetes Risk

November 26, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    203 shares
    Share 81 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    119 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    94 shares
    Share 38 Tweet 24
  • Scientists Create Fast, Scalable In Planta Directed Evolution Platform

    100 shares
    Share 40 Tweet 25

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revolutionizing Chinese Art Textbooks with Enhanced NMT

Optimizing Moxifloxacin Nanoparticles with Innovative Technique

Baseline Microplastics Mask Impact of Recycled Fertilizers

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.