• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Monday, January 18, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Seeking answers in ferroelectric patterning

Bioengineer by Bioengineer
December 21, 2020
in Science News
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Understanding the changing patterns in ferroelectric films

IMAGE

Credit: FLEET

Why do some ferroelectric materials display bubble-shaped patterning, while others display complex, labyrinthine patterns?

A FLEET study finds the answer to the changing patterns in ferroelectric films lies in non-equilibrium dynamics, with topological defects driving subsequent evolution.

Ferroelectric materials can be considered an electrical analogy to ferromagnetic materials, with their permanent electric polarisation resembling the north and south poles of a magnet.

Understanding the physics behind their domain-pattern changes is crucial for designing advanced low-energy ferroelectric electronics, or brain-inspired neuromorphic computing.

Labyrinthine vs bubbles: what patterns reveal

The characteristic domain patterns of thin-film ferroelectric materials are strongly influenced by the type of materials, and by the film configuration (substrate, electrode, thickness, structure, etc).

“We wanted to understand what drives the emergence of one pattern rather than another,” explains Dr Qi (Peggy) Zhang (UNSW), one of the study’s three lead authors.

“For example: what drives formation of mosaic-shaped domain patterning, instead of labyrinth-shaped patterning. And why would drive a subsequent change to bubble-shaped patterning.”

The research team were seeking a common framework or roadmap driving such domain arrangements.

“Is there a topological signature in these states? Is their topology evolutive? And if yes, how so? These are the types of answers we were seeking,” says Dr Yousna Nahas (University of Arkansas).

“We found that self-patterning of ferroelectric polar domains can be understood by examining the non-equilibrium dynamics, and that a common framework is that of phase separation kinetics.

“We also performed topological characterization, and studied pattern evolution under an external, applied electric field, which revealed the crucial role of topological defects in mediating the pattern transformation.”

“The results of this study build a roadmap (a phase diagram of polar domain patterns) for researchers to use when wanting to ‘navigate’ through the plurality of modulated phases in low-dimensional ferroelectrics, says Dr Sergei Prokhorenko (University of Arkansas).

This study is thus interesting in its own field (condensed matter physics, ferroelectrics) but might also be relevant for an interdisciplinary audience in regards to the universality of concepts and results.

The study

Researchers investigated domain features and domain evolutions of thin-film Pb(Zr0.4Ti0.6)O3 (or ‘PZT’) through extensive modelling and experimental study (piezoresponse force microscope).

###

Researchers found that:

  • Electric-field control of skyrmion density elicits hysteretic conductance, which could be harnessed for solid-state neuromorphic computing
  • Engineering topological order in ferroic systems can enhance functional topological-based properties.

Topology and control of self-assembled domain patterns in low-dimensional ferroelectrics was published in Nature Communications in November 2020. (DOI 10.1038/s41467-020-19519-w)

As well as funding by the Australian Research Council (Discovery and Centres of Excellence programs), support was received from DARPA (TEE and MATRIX programs), and the Vannevar Bush Faculty Fellowship (Department of Defense). Computation was conducted at the Arkansas High Performance Computing Center.

Dr Qi (Peggy) Zhang is a Women in FLEET Fellow.

Media Contact
Errol Hunt
[email protected]

Original Source

http://www.fleet.org.au/blog/seeking-answers-in-ferroelectric-patterning/

Related Journal Article

http://dx.doi.org/10.1038/s41467-020-19519-w

Tags: Chemistry/Physics/Materials SciencesElectrical Engineering/ElectronicsElectromagneticsMaterialsNanotechnology/MicromachinesSuperconductors/Semiconductors
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

Eliminating microplastics in wastewater directly at the source

January 18, 2021
IMAGE

Where COVID-19 hit hardest, sudden deaths outside the hospital increased

January 18, 2021

Many parents say teens with anxiety, depression may benefit from peer confidants at school

January 18, 2021

Scientists shed light on how and why some people report “hearing the dead”

January 18, 2021
Next Post
IMAGE

Regulating off-centering distortion maximizes photoluminescence in halide perovskites

IMAGE

Performance breakthrough by topological-insulator into a waveguide-resonator system

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    The map of nuclear deformation takes the form of a mountain landscape

    53 shares
    Share 21 Tweet 13
  • Blood pressure drug may be key to increasing lifespan, new study shows

    44 shares
    Share 18 Tweet 11
  • New drug form may help treat osteoporosis, calcium-related disorders

    39 shares
    Share 16 Tweet 10
  • People living with HIV face premature heart disease and barriers to care

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Chemistry/Physics/Materials SciencesTechnology/Engineering/Computer ScienceCell BiologycancerPublic HealthMaterialsClimate ChangeGeneticsEcology/EnvironmentMedicine/HealthBiologyInfectious/Emerging Diseases

Recent Posts

  • Eliminating microplastics in wastewater directly at the source
  • Where COVID-19 hit hardest, sudden deaths outside the hospital increased
  • Many parents say teens with anxiety, depression may benefit from peer confidants at school
  • Scientists shed light on how and why some people report “hearing the dead”
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In