• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Sunday, January 17, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Researchers discover how three-dimensional organization of the genome regulates cell differentiation

Bioengineer by Bioengineer
May 24, 2019
in Health
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

UMN study leads to better understanding of genomic architecture

MINNEAPOLIS, MN- May 24, 2019 – A new study from the University of Minnesota Medical School clarifies how the three-dimensional organization of the genome is regulated at the onset of skeletal muscle formation. Although the DNA sequence of the genome is a linear code, like a long sentence, the actual DNA molecule twists and folds in 3D space, with some sequences that are distant from each other in sequence being physically close to each other in space. These 3D interactions are thought to allow proteins that bind DNA to regulate the activity of genes that are distant from where they are binding.

In an article just published in Nature Communications, Alessandro Magli, PhD, Assistant Professor, and Rita Perlingeiro, PhD, Professor of Medicine and Lillehei Professor in Stem Cell and Regenerative Cardiovascular Medicine, Cardiovascular Division at the University of Minnesota Medical School, and colleagues study the activity of one of these DNA-binding proteins, Pax3, a protein that is essential for the development of skeletal muscle. They show that large loops form between DNA sequences where Pax3 binds, and muscle-specific genes that Pax3 regulates, and that are important for the development of muscle.

The same research group had previously mapped all of the sites to which Pax3 binds in the genome of mesoderm cells, a type of embryonic tissue with the capacity to form muscle. They found that when Pax3 binds to DNA, it opens up and loosens the packing of the DNA molecule in the local region. In the current study, they discovered that after this happens, the Pax3 protein brings in a bridging molecule, called Ldb1, which allows 3 dimensional loops to form between distant sequences by forming a bridge between the Pax3 protein and the distant gene that it is regulating.

To prove the requirement of Ldb1 for the changes in genome architecture, Magli said “they used a genetic trick,” as they forced Ldb1 recruitment where Pax3 typically binds in the genome by creating a Pax3-Ldb1 chimera. They also showed that in the absence of Ldb1, muscle does not form properly in mouse embryos.

“Altogether, we demonstrate that Pax3, besides regulating the chromatin architecture, is also manipulating the activation of myogenic enhancers, genomic DNA fragments with important regulatory functions for gene expression,” said Magli.

There is evidence that changes in DNA molecular looping, also called chromatin architecture, can lead to genetic disorders and cancer. “By studying how chromatin architecture is regulated within the nucleus, we will better understand both normal and pathological processes and potentially identify new targets for the treatment of diseases such as cancer,” said Magli.

“Both publications are great examples of how pluripotent stem cells represent a valuable tool to study cell fate specification and dissect transcriptional regulation,” says Perlingeiro.

There is more work ahead, and more questions to be answered. One of Magli’s goals is to continue this line of research by determining the signals that induces changes in chromatin architecture and use this knowledge to efficiently generate cells for skeletal muscle regeneration in diseases like muscular dystrophy.

###

About the University of Minnesota Medical School

The University of Minnesota Medical School is at the forefront of learning and discovery, transforming medical care and educating the next generation of physicians. Our graduates and faculty produce high-impact biomedical research and advance the practice of medicine. Visit med.umn.edu to learn how the University of Minnesota is innovating all aspects of medicine.

Media Contact
Krystle Barbour
[email protected]

Tags: Medicine/Health
Share13Tweet7Share2ShareShareShare1

Related Posts

IMAGE

Rapid blood test identifies COVID-19 patients at high risk of severe disease

January 15, 2021
IMAGE

Special interests can be assets for youth with autism

January 15, 2021

Principles of care established for young adults with substance use disorders

January 15, 2021

USC study measures brain volume differences in people with HIV

January 15, 2021
Next Post

British Council UK-Russia researcher links genomics research workshop

IMAGE

'Neural Lander' uses AI to land drones smoothly

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    The map of nuclear deformation takes the form of a mountain landscape

    53 shares
    Share 21 Tweet 13
  • Blood pressure drug may be key to increasing lifespan, new study shows

    44 shares
    Share 18 Tweet 11
  • New drug form may help treat osteoporosis, calcium-related disorders

    38 shares
    Share 15 Tweet 10
  • New findings help explain how COVID-19 overpowers the immune system

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Climate ChangeChemistry/Physics/Materials SciencesBiologyInfectious/Emerging DiseasesTechnology/Engineering/Computer ScienceMedicine/HealthEcology/EnvironmentMaterialsGeneticscancerPublic HealthCell Biology

Recent Posts

  • Better diet and glucose uptake in the brain lead to longer life in fruit flies
  • Rapid blood test identifies COVID-19 patients at high risk of severe disease
  • Conductive nature in crystal structures revealed at magnification of 10 million times
  • Howard University professor to receive first Joseph A. Johnson Award
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In