• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Immunology

Reducing brain inflammation could treat tinnitus and other hearing loss-related disorders

Bioengineer by Bioengineer
June 18, 2019
in Immunology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Inflammation in a sound-processing region of the brain mediates ringing in the ears in mice that have noise-induced hearing loss, according to a study publishing June 18 in the open-access journal PLOS Biology by Shaowen Bao of the University of Arizona, and colleagues.

Hearing loss is a widespread condition that affects approximately 500 million individuals, and is a major risk factor for tinnitus — the perception of noise or ringing in the ears. Recent studies indicate that hearing loss causes inflammation — the immune system’s response to injury and infection — in the auditory pathway. But its contribution to hearing loss-related conditions such as tinnitus is still poorly understood. To address this gap in knowledge, Bao and his colleagues examined neuroinflammation — inflammation that affects the nervous system — in the auditory cortex of the brain following noise-induced hearing loss, and its role in tinnitus, in rodent models.

The results indicate that noise-induced hearing loss is associated with elevated levels of molecules called proinflammatory cytokines and the activation of non-neuronal cells called microglia — two defining features of neuroinflammatory responses–in the primary auditory cortex. Experiments in mice that incur noise-induced hearing loss showed that a cell-signaling molecule called tumor necrosis factor alpha (TNF-α) mediates neuroinflammation, tinnitus, and synaptic imbalance — an altered pattern of signaling between neurons. Moreover, the researchers found that pharmacological blockade of TNF-α or depletion of microglia prevented tinnitus in mice with noise-induced hearing loss. According to the authors, the findings suggest that neuroinflammation may be a therapeutic target for treating tinnitus and other hearing loss-related disorders.

###

Peer-reviewed / Experimental Study / Animals

In your coverage please use this URL to provide access to the freely available article in PLOS Biology: http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3000307

Citation: Wang W, Zhang LS, Zinsmaier AK, Patterson G, Leptich EJ, Shoemaker SL, et al. (2019) Neuroinflammation mediates noise-induced synaptic imbalance and tinnitus in rodent models. PLoS Biol 17(6): e3000307. https://doi.org/10.1371/journal.pbio.3000307

Funding: This work was partially supported by National Institute of Health (DC009259 for SB, DC014335 for JZ), Department of Defense (W81XWH-15-1-0028 and W81XWH-15-1-0356 for SB, W81XWH-15-1-0357 for JZ) and the Food and Health Bureau of Hong Kong Special Administrative Region Government (04150076 for SY). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

Press-only preview: https://plos.io/2I82UQz

Contact: J. Chris McKnight, [email protected]

Media Contact
Shaowen Bao
[email protected]
http://dx.doi.org/10.1371/journal.pbio.3000307

Tags: BiologyHearing/SpeechImmunology/Allergies/AsthmaInfectious/Emerging DiseasesMedicine/HealthMicrobiologyneurobiologyPets/EthologyPhysiologyZoology/Veterinary Science
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

UMass Amherst grad student awarded fellowship for food allergy research

July 23, 2021
IMAGE

Less-sensitive COVID-19 tests may still achieve optimal results if enough people tested

July 22, 2021

Public trust in CDC, FDA, and Fauci holds steady, survey shows

July 20, 2021

USC study shows male-female differences in immune cell function

July 19, 2021
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    60 shares
    Share 24 Tweet 15
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Molecular Signatures of Muscle in Cancer Cachexia

Innovative Soft Robot Intubation Device Developed at UCSB Promises to Save Lives

New Benchmark Study Reveals Emerging Trends in Canine Behavior

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.