• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Friday, June 9, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Pusan National University researchers develop high-adsorption phosphates for radionuclide cesium ion capture

Bioengineer by Bioengineer
May 4, 2023
in Chemistry
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Nuclear energy is crucial for producing cleaner energy, but the associated radioactive pollution requires strategic solutions. Cesium (Cs+) is a toxic radionuclide generated from nuclear power plants that demands immobilization and high adsorption methods to prevent environmental pollution. Although phosphate-based adsorbents are excellent candidates for cleanup, their inefficient ion exchange leads to limited adsorption capacity. The high theoretical adsorption of phosphate adsorbents does not match their experimental adsorption capacities.

Pusan National University researchers have developed high-adsorption capacity magnesium phosphates for highly efficient capture of radionuclide cesium

Credit: Prof. Kuk Cho from Pusan National University

Nuclear energy is crucial for producing cleaner energy, but the associated radioactive pollution requires strategic solutions. Cesium (Cs+) is a toxic radionuclide generated from nuclear power plants that demands immobilization and high adsorption methods to prevent environmental pollution. Although phosphate-based adsorbents are excellent candidates for cleanup, their inefficient ion exchange leads to limited adsorption capacity. The high theoretical adsorption of phosphate adsorbents does not match their experimental adsorption capacities.

To remove harmful Cs+ from radioactive wastewater, Pusan National University researchers led by Professor Kuk Cho from the Department of Environmental Engineering have synthesized dittmarite-type phosphates with a layered structure, ideal for easy ion exchange. The team found that their magnesium phosphates had record-high adsorption capacities for Cs+, surpassing standard adsorbents due to exchangeable ions and dissolution-precipitation. Prof. Cho surmises, “The presence of exchangeable ions and dissolution-precipitation enabled record-high adsorption capacities for Cs+ that are higher than those of standard adsorbents.”

The study, which was made available online on April 7, 2023, will be published in Volume 453 of the Journal of Hazardous Materials on 5 July 2023. Using a one-pot hydrothermal method, the team synthesized KMgPO4⋅H2O (KMP) and NH4MgPO4⋅H2O (NMP), both of which are dittmarite-type compounds, having a high theoretical adsorption capacity of 754 mg g− 1 and 856 mg g− 1 for Cs+, respectively. The synthesized KMP and NMP had remarkable adsorption capacities of 630 mg g−1 and 711 mg g−1, respectively, which were 84% of their theoretical adsorption capacities. These experimentally measured adsorption capacity values are the highest among all reported adsorbents for Cs+.

  Next, the team characterized and analyzed the physical and chemical properties of the phosphates. Based on the Cs+ adsorption performance of KMP and NMP, they showed that these phosphates are not best suited for use in water with high divalent ion concentrations. However, they can still be used in Cs+ readsorption processes, following desorption processes, to concentrate Cs+ and reduce waste volume. Emphasizing the importance of this, Prof. Cho says, “Cs+ is a popular radionuclide generated from nuclear power plants, and the volume of its waste must be minimized for disposal. To minimize the volume, the adsorbent with higher adsorption capacity is advantageous.”

The study found that the new phosphates efficiently adsorb Cs+, providing a cost-effective method for radioactive waste disposal. This is particularly important in a world where nuclear power plants are expected to increase in number, and proper storage with appropriate adsorbents will become crucial for sustainability.

In conclusion, the high adsorption capacities and stability of the synthesized phosphates make them promising candidates to deal with the radioactive waste disposal challenge.

 

***

Reference

DOI: https://doi.org/10.1016/j.jhazmat.2023.131385

Authors: Zeqiu Li, Chenyang Yang, and Kuk Cho

Affiliations: Department of Environmental Engineering, Pusan National University, Geumjeong-gu, Busan, Republic of Korea

 

*Corresponding author Professor Kuk Cho’s email: [email protected]

 

About Pusan National University

Pusan National University, located in Busan, South Korea, was founded in 1946, and is now the no. 1 national university of South Korea in research and educational competency. The multi-campus university also has other smaller campuses in Yangsan, Miryang, and Ami. The university prides itself on the principles of truth, freedom, and service, and has approximately 30,000 students, 1200 professors, and 750 faculty members. The university is composed of 14 colleges (schools) and one independent division, with 103 departments in all.    

Website: https://www.pusan.ac.kr/eng/Main.do

 

About the author

Prof. Kuk Cho is a Professor of Environmental Engineering at the Pusan National University. His group is developing approaches to separate metal ions including radionuclides and heavy metals from water through designing functional materials. His group also focuses on the toxicity of atmospheric particulate matter. Before joining Pusan National University, he completed his postdoctoral training at University of Maryland, College Park. In 2005, Prof. Cho received a PhD in Environmental Engineering from Washington University in St. Louis.



Journal

Journal of Hazardous Materials

DOI

10.1016/j.jhazmat.2023.131385

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Dittmarite-type magnesium phosphates for highly efficient capture of Cs+

Article Publication Date

7-Apr-2023

COI Statement

The authors declare no competing interests.

Share12Tweet8Share2ShareShareShare2

Related Posts

New method takes the uncertainty out of oxide semiconductor layering

New method takes the uncertainty out of oxide semiconductor layering

June 9, 2023
DFEC can be reduced to form LiF-richer SEI on Li metal anode and induce denser lithium deposition

Tailoring fluorine-rich solid electrolyte interphase to boost high efficiency and long cycling stability of lithium metal batteries

June 8, 2023

Confinement effects of carbon nanotubes on polyoxometalate clusters enhance electrochemical energy storage

June 8, 2023

Study unravels the mysteries of actin filament polarity

June 8, 2023

POPULAR NEWS

  • plants

    Plants remove cancer causing toxins from air

    42 shares
    Share 17 Tweet 11
  • Element creation in the lab deepens understanding of surface explosions on neutron stars

    36 shares
    Share 14 Tweet 9
  • Deep sea surveys detect over five thousand new species in future mining hotspot

    35 shares
    Share 14 Tweet 9
  • How life and geology worked together to forge Earth’s nutrient rich crust

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Preparing the stage for 6G: A fast and compact transceiver for Sub-THz frequencies

New method takes the uncertainty out of oxide semiconductor layering

Researchers to explore potential of new treatment against vascular dementia

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 51 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In