• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, November 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Protein in prostate cancer may inhibit tumor growth

Bioengineer by Bioengineer
September 6, 2025
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers identified the protein responsible for cancer’s aggressiveness

Prostate cancer is the second most common cancer among men, according to the American Cancer Society. It’s also one of the trickiest cancers to diagnose and treat.

But new research from the University of Georgia has identified a protein that appears to prevent the cancer from spreading to and colonizing the bone, providing a new target for future therapeutics.

“Unfortunately, prostate cancer that has spread to the bone is very aggressive, often lethal and very difficult to treat,” said Brian Cummings, corresponding author of the study and head of the College of Pharmacy’s pharmaceutical and biomedical sciences department. “Even in cases of successful treatment, the patient’s quality of life is severely lessened due to bone loss.”

Prostate cancer that hasn’t spread beyond nearby organs has nearly a 100% survival rate, meaning almost all of these patients will live at least another five or more years after their initial diagnosis and treatment. But for men whose cancer has spread to other organs or the bone, that five-year survival rate plummets to 30%, according to the American Cancer Society. In the U.S., about one in every eight men will be diagnosed with prostate cancer and more than 34,000 men die each year from the disease.

The new study, published by Scientific Reports, focused on cancer-associated fibroblasts, which are the most abundant type of cell in tumors and are responsible for cancer growth and spread. The researchers found that knocking out a specific protein, called glypican-1, could prevent tumor cells from spreading into nearby bone.

The study supports a previous report from Cummings’ laboratory suggesting that this protein may prevent tumor growth. The researchers found that the protein doesn’t alter the cancer cells themselves. Instead it affects a group of neighboring cells called fibroblasts.

Fibroblasts are cells that help make up connective tissues in people and animals. But fibroblasts can also be present in cancerous tumors, where they facilitate cancer growth and spread.

To determine the glypican-1 protein’s role in helping cancer spread, the researchers combined human prostate cancer cells and human bone-derived cells to examine how the cancer cells transformed the fibroblast. Then they genetically modified the cancer cells and the fibroblast to knock out the protein.

Without the protein, the prostate cancer cells had problems transforming the fibroblast.

The study was the first to demonstrate such a role for glypican-1 and suggests that this protein may have the same effect on tumor growth in people.

“Part of the significance of this study is that it demonstrates how cancer cells are able to change their environment in ways to facilitate their own growth,” Cummings said. “Prostate cancer cells alter their environment so that they can colonize bone. This study identifies a role for a protein that appears to inhibit the harmful changes that prostate cancer makes to the bone.”

“This protein appears to stop the ability of cancer cells to change their environment, which decreases the cancer’s aggressiveness. The fact that this protein is found in the bone, where many aggressive prostate cancer cells reside, further increases the potential impact of this work.”

###

Co-authors on the study included Som Shenoy, a professor in the Department of Clinical and Administrative Pharmacy; Arti Verma, a postdoctoral fellow in Shenoy’s laboratory; Lillie Barnette, a graduate student in Cummings’ laboratory; and Sukhneeraj Kaur, a former graduate student in Cummings’ laboratory, who was the first author.

Media Contact
Brian Cummings
[email protected]

Original Source

https://news.uga.edu/prostate-cancer-protein-research/

Related Journal Article

http://dx.doi.org/10.1038/s41598-021-88519-7

Tags: cancerMedicine/HealthProstate Cancer
Share12Tweet8Share2ShareShareShare2

Related Posts

Potential Health Risks Linked to Prolonged Melatonin Supplement Use for Sleep

November 3, 2025

Scientists Introduce Breakthrough Gene-Switch Technology

November 3, 2025

Barriers Faced by Community Midwives in Rural Pakistan

November 3, 2025

Enhancing Adolescent Health Literacy: Insights from Nurses

November 3, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1296 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    204 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    137 shares
    Share 55 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Potential Health Risks Linked to Prolonged Melatonin Supplement Use for Sleep

Scientists Introduce Breakthrough Gene-Switch Technology

Gene Discovered to Enhance Heart’s Self-Recovery After Attack or Failure

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.