• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Protein in prostate cancer may inhibit tumor growth

Bioengineer by Bioengineer
September 6, 2025
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers identified the protein responsible for cancer’s aggressiveness

Prostate cancer is the second most common cancer among men, according to the American Cancer Society. It’s also one of the trickiest cancers to diagnose and treat.

But new research from the University of Georgia has identified a protein that appears to prevent the cancer from spreading to and colonizing the bone, providing a new target for future therapeutics.

“Unfortunately, prostate cancer that has spread to the bone is very aggressive, often lethal and very difficult to treat,” said Brian Cummings, corresponding author of the study and head of the College of Pharmacy’s pharmaceutical and biomedical sciences department. “Even in cases of successful treatment, the patient’s quality of life is severely lessened due to bone loss.”

Prostate cancer that hasn’t spread beyond nearby organs has nearly a 100% survival rate, meaning almost all of these patients will live at least another five or more years after their initial diagnosis and treatment. But for men whose cancer has spread to other organs or the bone, that five-year survival rate plummets to 30%, according to the American Cancer Society. In the U.S., about one in every eight men will be diagnosed with prostate cancer and more than 34,000 men die each year from the disease.

The new study, published by Scientific Reports, focused on cancer-associated fibroblasts, which are the most abundant type of cell in tumors and are responsible for cancer growth and spread. The researchers found that knocking out a specific protein, called glypican-1, could prevent tumor cells from spreading into nearby bone.

The study supports a previous report from Cummings’ laboratory suggesting that this protein may prevent tumor growth. The researchers found that the protein doesn’t alter the cancer cells themselves. Instead it affects a group of neighboring cells called fibroblasts.

Fibroblasts are cells that help make up connective tissues in people and animals. But fibroblasts can also be present in cancerous tumors, where they facilitate cancer growth and spread.

To determine the glypican-1 protein’s role in helping cancer spread, the researchers combined human prostate cancer cells and human bone-derived cells to examine how the cancer cells transformed the fibroblast. Then they genetically modified the cancer cells and the fibroblast to knock out the protein.

Without the protein, the prostate cancer cells had problems transforming the fibroblast.

The study was the first to demonstrate such a role for glypican-1 and suggests that this protein may have the same effect on tumor growth in people.

“Part of the significance of this study is that it demonstrates how cancer cells are able to change their environment in ways to facilitate their own growth,” Cummings said. “Prostate cancer cells alter their environment so that they can colonize bone. This study identifies a role for a protein that appears to inhibit the harmful changes that prostate cancer makes to the bone.”

“This protein appears to stop the ability of cancer cells to change their environment, which decreases the cancer’s aggressiveness. The fact that this protein is found in the bone, where many aggressive prostate cancer cells reside, further increases the potential impact of this work.”

###

Co-authors on the study included Som Shenoy, a professor in the Department of Clinical and Administrative Pharmacy; Arti Verma, a postdoctoral fellow in Shenoy’s laboratory; Lillie Barnette, a graduate student in Cummings’ laboratory; and Sukhneeraj Kaur, a former graduate student in Cummings’ laboratory, who was the first author.

Media Contact
Brian Cummings
[email protected]

Original Source

https://news.uga.edu/prostate-cancer-protein-research/

Related Journal Article

http://dx.doi.org/10.1038/s41598-021-88519-7

Tags: cancerMedicine/HealthProstate Cancer
Share12Tweet8Share2ShareShareShare2

Related Posts

AI Predicts Recovery in TBI Intensive Care Programs

September 23, 2025

Sleep Duration Influences Screen Time’s Impact on Kids

September 23, 2025

Link Between Air Pollution and Childhood Myopia Uncovered

September 23, 2025

Innovative Models Tackle Timing, Surgery Scheduling, Capacity Planning, and Recovery Unit Stays

September 23, 2025
Please login to join discussion

POPULAR NEWS

  • Physicists Develop Visible Time Crystal for the First Time

    Physicists Develop Visible Time Crystal for the First Time

    69 shares
    Share 28 Tweet 17
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    50 shares
    Share 20 Tweet 13
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

AI Predicts Recovery in TBI Intensive Care Programs

Exploring the Potential of Drones as First Responders: A Feasibility Study in Northern Virginia

Sleep Duration Influences Screen Time’s Impact on Kids

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.