• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, December 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Plastic pollution causes mussels to lose grip

Bioengineer by Bioengineer
January 29, 2019
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Microplastics potentially threatens future survival of mollusc — new study

IMAGE

Credit: Photograph by Dr Dannielle Green, Anglia Ruskin University


A new study shows that microplastics are affecting the ability of mussels to attach themselves to their surroundings – potentially having a devastating impact on ocean ecosystems as well as a worldwide industry worth between 3-4 billion US dollars per year.

The new research, published in the journal Environmental Pollution, was led by Dr Dannielle Green of Anglia Ruskin University, and was carried out at the Portaferry Marine Laboratory in Northern Ireland.

The researchers found that blue mussels exposed to doses of non-biodegradable microplastics over a period of 52 days produced significantly fewer byssal threads, which are thin fibres that help mussels attach themselves to rocks and ropes.

As well as enabling mussels to survive waves and strong tides, and stay attached to their surroundings, these byssal threads also enable them to form extensive reefs that provide important habitats for other marine animals and plants.

The study also found that the overall tenacity or attachment strength of mussels exposed to microplastics, calculated by measuring the maximal vertical force required for the mussel to become dislodged from its position, fell by 50% compared to a control sample of mussels that were not exposed to microplastics.

And in order to understand potential effects of microplastics on the health of the mussels, the researchers measured the proteins within the mussel’s circulatory fluid or haemolymph, which performs a similar function to blood. This showed that microplastics induced a strong immune response and also affected the mussels’ metabolism.

Dr Green, a Senior Lecturer in Biology at Anglia Ruskin University, said: “Tenacity is vital for mussels to form and maintain reefs without being dislodged by hydrodynamic forces. Our study showed that the presence of non-biodegradable microplastics reduced the number of byssal threads produced by the mussels, which likely accounts for the 50% reduction in their attachment strength.

“Byssal threads help mussels to form aggregations, increasing fertilisation success and making mussels more resistant to predation. A reduction in these byssal threads in the wild could lead to cascading impacts on biodiversity as well as reducing yields from aquaculture, as mussels are more likely to be washed away by waves or strong tides.

“Our research also shows that even biodegradable microplastics can affect the health of mussels. Both biodegradable and non-biodegradable plastic are used in making single-use packaging, which if it becomes litter can break down into microplastics. Better recycling and an overall reduction of these materials can play an important role in helping to safeguard our marine environment.”

###

Media Contact
Jon Green
[email protected]
44-012-456-84717

Related Journal Article

http://dx.doi.org/10.1016/j.envpol.2018.12.017

Tags: BiologyFisheries/AquacultureMarine/Freshwater BiologyPollution/RemediationZoology/Veterinary Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Lactic Acid Fermented Rice Germ Boosts Skin Health

Lactic Acid Fermented Rice Germ Boosts Skin Health

December 12, 2025
blank

Do Genomic Patterns Enhance Livestock Reproductive Fitness?

December 12, 2025

Genomic Study Reveals Widespread Resistance Genes in Serratia

December 12, 2025

Impact of Urbanization on Wild Bee Diversity

December 12, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    205 shares
    Share 82 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    121 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    108 shares
    Share 43 Tweet 27
  • Nurses’ Views on Online Learning: Effects on Performance

    69 shares
    Share 28 Tweet 17

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

LBX2 Drives Colorectal Cancer Through Glycosylation Feedback

Unlocking Global Rainwater Harvesting for Safe Water

Sleep Sufficiency Links to Autism in U.S. Kids

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.