• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, January 15, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Plant stem cells require low oxygen levels

Bioengineer by Bioengineer
May 23, 2019
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Plants function as the green lungs of our planet. Rightfully so, due to the capacity of a large single tree releasing more than 120 kg of oxygen into the Earth’s atmosphere every year through a series of sunlight-fuelled reactions in photosynthesis. However during flood events, plant tissues may experience severe oxygen shortage, a stressful situation that every year leads to substantial loss in yield for all major crops such as rice, wheat and barley.

Researchers from the Department of Biology at University of Copenhagen, University of Pisa in Italy and RWTH Aachen University and University of Heidelberg both in Germany have now discovered that low oxygen concentrations (hypoxia) provide essential conditions for plant growth.

– ‘Equipped with a new generation of microscopic oxygen probes, we were able to measure the oxygen concentration of a tissue cubicle of approximately thirty cells, referred to as the shoot apical meristem’, says professor Ole Pedersen, University of Copenhagen and continues, ‘We found that in this region, a niche of low oxygen envelops the stem cells that are responsible for the production of new leaves and flowers. Here, low oxygen levels control the rate at which new leaves are produced by promoting the stability of a protein, named ZPR2, responsible for cell proliferation and differentiation’.

Hence, most plant tissues suffer severely in the presence of hypoxia as caused by flood event but this new study clearly shows that hypoxia is a prerequisite for the maintenance of stem cells.

This discovery follows those made in recent years about the control of plant metabolism in anaerobiosis, also published in Nature and Nature Communications and represents a step forward towards the understanding of how the production of new organs is connected to environmental parameters that affect plant growth and productivity.

The requirement of low oxygen levels to maintain stem cells is not unique to plants. Also several types of stem cells of animals, including human, share the same feature. This is remarkable since plants and animals are only very distinctly related in evolutionary context, but both represent the highest level of complexity in terms of multicellular organisation in tissues. Apparently, establishment and maintenance of low oxygen is a requisite for the activity of ‘factories’ of new cells and therefore developed independently in both plants and animals.

Applications of this discovery are twofold. Breeders have now a new target for the selection of novel crop varieties, better adapted to maintain productivity in suboptimal environments that affect respiration, such as high temperature or rapid flooding. Moreover, researchers will now compare plant and animal stem cells to uncover the secrets of stem cell maintenance and development of organs.

###

Media Contact
Ole Pedersen
[email protected]
https://www1.bio.ku.dk/nyheder/pressemeddelelser/plant-stem-cells-require-low-oxygen-levels/

Tags: BiodiversityBiologyCell BiologyClimate ChangeEcology/EnvironmentMarine/Freshwater BiologyMicrobiologyMolecular BiologyPlant SciencesZoology/Veterinary Science
Share13Tweet8Share2ShareShareShare2

Related Posts

Mitochondrial Insights into Phrynocephalus Guttatus Evolution

Mitochondrial Insights into Phrynocephalus Guttatus Evolution

January 15, 2026
Exploring SET Domain Genes in Neopyropia yezoensis

Exploring SET Domain Genes in Neopyropia yezoensis

January 14, 2026

Selective Tryptophan Detection in Milk via Enzyme Sensor

January 14, 2026

Structural and Functional Differences in Citrus PRR and R Genes

January 14, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    155 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    147 shares
    Share 59 Tweet 37
  • Robotic Ureteral Reconstruction: A Novel Approach

    75 shares
    Share 30 Tweet 19
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Single-Atom Trapping via Metasurface Tweezers

Mitochondrial Insights into Phrynocephalus Guttatus Evolution

Marine Molecules Target Type 1 Diabetes Insights

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.