• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Pitt study: Sexual selection alone could spark formation of new species

Bioengineer by Bioengineer
October 17, 2019
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Animals that seek mates and fight rivals that resemble parents could eventually set stage for new species

IMAGE

Credit: Richards-Zawacki Lab


PITTSBURGH–A new study by University of Pittsburgh researchers indicates animals that seek mates and fight rivals that resemble their parents could be behaving in ways that lead to the formation of new species.

The study by Yusan Yang, a graduate student in the Richards-Zawacki Lab in the Department of Biological Sciences and associate professor Corinne Richards-Zawacki, examines behavioral imprinting–the phenomenon of offspring learning a parent’s appearance to choose future mates or distinguish rivals–in the strawberry poison frog (Oophaga pumilio).

This central American frog has a wide variety of color types. The mother frog raises their tadpoles by feeding them unfertilized eggs. This mother-offspring interaction, the team discovered, influences the behaviors of the offspring: females grow up to prefer mates that have the same color as their mother and males grow up to be more aggressive when their rival has the same color as their mother.

The team developed a mathematical model to demonstrate how these imprinted behaviors can contribute to the formation of new species. Because of the imprinted preferences, females mate more with similar colored males, and less with differently colored males, which, over time, could lead to two color types becoming separate species.

“Sexual selection is traditionally thought of as a strong driving force for the formation of new species. But several theoretical models have suggested it was not incredibly likely to do so without natural selection or geographic separation,” explained Yang.

“One of the reasons is because it is hard to maintain multiple mating types in the population. Usually, natural selection can serve the role, but our model suggests that imprinted male aggression can also do it. This means that with imprinting in both sexes, sexual selection on its own could potentially kick start speciation.”

The study, “Imprinting Sets the Stage for Speciation,” was published in Nature on Oct. 2.

The study was focused on amphibians, but the results could shed light on the evolution of many other animal species with imprinting, and in general where new species come from.

“Speciation is a key process in biology that has led to the amazing diversity of species we see today. How that happens is a fundamental question in evolution and one we’ve been trying to answer since the time of Charles Darwin,” said Richards-Zawacki.

###

Media Contact
Deborah Todd
[email protected]
412-624-6687

Tags: Algorithms/ModelsBiodiversityBiologyDevelopmental/Reproductive BiologyEvolutionPaleontologyPhysiologyPopulation Biology
Share13Tweet8Share2ShareShareShare2

Related Posts

Predicting Lung Infections After Brain Hemorrhage

Predicting Lung Infections After Brain Hemorrhage

August 2, 2025
blank

Impact of Morphology and Location on Aneurysms

August 2, 2025

Unraveling EMT’s Role in Colorectal Cancer Spread

August 2, 2025

Gut γδ T17 Cells Drive Brain Inflammation via STING

August 2, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    41 shares
    Share 16 Tweet 10
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    38 shares
    Share 15 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Iberian Horse Genomes Trace Post-Ice Age History

Predicting Lung Infections After Brain Hemorrhage

Impact of Morphology and Location on Aneurysms

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.