• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Monday, January 18, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Bioengineering

Organic Computer

Bioengineer by Bioengineer
May 10, 2013
in Bioengineering
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The US team fitted two rats with devices called brain-to-brain interfaces that let the animals collaborate on simple tasks to earn rewards, such as a drink of water.

organic_pc2

In one radical demonstration of the technology, the scientists used the internet to link the brains of two rats separated by thousands of miles, with one in the researchers’ lab at Duke University in Durham, North Carolina, and the other in Natal, Brazil.

Led by Miguel Nicolelis, a pioneer of devices that allow paralysed people to control computers and robotic arms with their thoughts, the researchers say their latest work may enable multiple brains to be hooked up to share information.

“These experiments showed that we have established a sophisticated, direct communication linkage between brains,” Nicolelis said in a statement. “Basically, we are creating what I call an organic computer.”

The scientists first demonstrated that rats can share, and act on, each other’s sensory information by electrically connecting their brains via tiny grids of electrodes that reach into the motor cortex, the brain region that processes movement.

The rats were trained to press a lever when a light went on above it. When they performed the task correctly, they got a drink of water. To test the animals’ ability to share brain information, they put the rats in two separate compartments. Only one compartment had a light that came on above the lever. When the rat pressed the lever, an electronic version of its brain activity was sent directly to the other rat’s brain. In trials, the second rat responded correctly to the imported brain signals 70% of the time by pressing the lever.

Remarkably, the communication between the rats was two-way. If the receiving rat failed at the task, the first rat was not rewarded with a drink, and appeared to change its behaviour to make the task easier for its partner. In further experiments, the rats collaborated in a task that required them to distinguish between narrow and wide openings using their whiskers.

In the final test, the scientists connected rats on different continents and beamed their brain activity back and forth over the internet. “Even though the animals were on different continents, with the resulting noisy transmission and signal delays, they could still communicate,” said Miguel Pais-Vieira, the first author of the study, in a statement. “This tells us that we could create a workable network of animal brains distributed in many different locations.”

Nicolelis said the team is now working on ways to link several animals’ brains at once to solve more complex tasks. “We cannot even predict what kinds of emergent properties would appear when animals begin interacting as part of a ‘brain-net’,” he said. “In theory, you could imagine that a combination of brains could provide solutions that individual brains cannot achieve by themselves.”

The research is published in the journal Scientific Reports.

Anders Sandberg, who studies the ethics of neurotechnologies at the Future of Humanity Institute at Oxford University, said the work was “very important” in helping to understand how brains encode information.

But the implications of the technology and its potential future uses are far broader, said Sandberg. “The main reason we are running the planet is that we are amazingly good at communicating and coordinating. Without that, although we are very smart animals, we would not dominate the planet.”

“I don’t think there’s any risk of supersmart rats from this,” he added. “There’s a big difference between sharing sensory information and being able to plan. I’m not worried about an imminent invasion of ‘rat multiborgs’.”

Very little is known about how thoughts are encoded and how they might be transmitted into another person’s brain – so that is not a realistic prospect any time soon. And much of what is in our minds is what Sandberg calls a “draft” of what we might do. “Often, we don’t want to reveal those drafts, that would be embarrassing and confusing. And a lot of those drafts are changed before we act. Most of the time I think we’d be very thankful not to be in someone else’s head.”
Story Source:

The above story is reprinted from materials provided by Guardian.

Tags: BIOENGINEEROrganic Computer
Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Robo-fish

September 19, 2016
blank

Mice born from ‘tricked’ eggs

September 17, 2016

UCLA researchers use stem cells to grow 3-D lung-in-a-dish

September 16, 2016

Sixteen MIT grad students named Siebel Scholars for 2017

September 16, 2016
Next Post
blank

Imperial College: Research Fellowship in Lung Mechanics

blank

Carnivorous Plant Throws out 'Junk' DNA

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    The map of nuclear deformation takes the form of a mountain landscape

    53 shares
    Share 21 Tweet 13
  • Blood pressure drug may be key to increasing lifespan, new study shows

    44 shares
    Share 18 Tweet 11
  • New drug form may help treat osteoporosis, calcium-related disorders

    39 shares
    Share 16 Tweet 10
  • People living with HIV face premature heart disease and barriers to care

    57 shares
    Share 23 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

BiologyTechnology/Engineering/Computer SciencecancerChemistry/Physics/Materials SciencesEcology/EnvironmentGeneticsMedicine/HealthMaterialsClimate ChangeInfectious/Emerging DiseasesPublic HealthCell Biology

Recent Posts

  • New management approach can help avoid species vulnerability or extinction
  • New computational tool reliably differentiates between cancer and normal cells from single-cell RNA-sequencing data
  • Inexpensive battery charges rapidly for electric vehicles, reduces range anxiety
  • Timing is of the essence when treating brain swelling in mice
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In