• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Tuesday, January 26, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Bioengineering

Novel Gene Discovery Could Lead to New HIV Treatments

Bioengineer by Bioengineer
September 19, 2013
in Bioengineering
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A team of researchers led by King’s College London has for the first time identified a new gene which may have the ability to prevent HIV, the virus that causes AIDS, from spreading after it enters the body.

Published in Nature today, the study is the first to identify a role for the human MX2 gene in inhibiting HIV. Researchers say this gene could be a new target for effective, less toxic treatments where the body’s own natural defence system is mobilised against the virus.

The work was funded by the Medical Research Council and the National Institute for Health Research (NIHR) Biomedical Research Centre at Guy’s and St Thomas’ NHS Foundation Trust and King’s College London. The study was also supported by the Wellcome Trust and European Commission.

Scientists carried out experiments on human cells in the lab, introducing the virus to two different cell lines and observing the effects. In one cell line the MX2 gene was expressed or ‘switched on’, and in the other it was not, or ‘silenced’. They saw that in the cells where MX2 was silenced, the virus replicated and spread. In the cells where the MX2 gene was expressed, the virus was not able to replicate and new viruses were not produced.

The work was led by Dr Caroline Goujon and Professor Mike Malim at the Department of Infectious Diseases, King’s College London. Professor Malim said: ‘This is an extremely exciting finding which advances our understanding of how HIV virus interacts with the immune system and opens up opportunities to develop new therapies to treat the disease. Until now we knew very little about the MX2 gene, but now we recognise both its potent anti-viral function and a key point of vulnerability in the life cycle of HIV.
‘Developing drugs to stimulate the body’s natural inhibitors is a very important approach because you are triggering a natural process and therefore won’t have the problem of drug resistance. There are two possible routes — it may be possible to develop either a molecule that mimics the role of MX2 or a drug which activates the gene’s natural capabilities.

‘Although people with HIV are living longer, healthier lives with the virus thanks to current effective treatments, they can often be toxic for the body and drug resistance can become an issue with long-term use. It is important to continue to find new ways of mobilising the body’s natural defence systems and this gene appears to be a key player in establishing viral control in people with HIV.’

Story Source:

The above story is based on materials provided by King’s College London.

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Robo-fish

September 19, 2016
blank

Mice born from ‘tricked’ eggs

September 17, 2016

UCLA researchers use stem cells to grow 3-D lung-in-a-dish

September 16, 2016

Sixteen MIT grad students named Siebel Scholars for 2017

September 16, 2016
Next Post
Credits: shutterstock.com

Nanoscale Neuronal Activity Measured for First Time

blank

Calico project

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    The map of nuclear deformation takes the form of a mountain landscape

    54 shares
    Share 22 Tweet 14
  • People living with HIV face premature heart disease and barriers to care

    69 shares
    Share 28 Tweet 17
  • New drug form may help treat osteoporosis, calcium-related disorders

    41 shares
    Share 16 Tweet 10
  • New findings help explain how COVID-19 overpowers the immune system

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

GeneticscancerPublic HealthCell BiologyMedicine/HealthChemistry/Physics/Materials SciencesEcology/EnvironmentClimate ChangeBiologyInfectious/Emerging DiseasesMaterialsTechnology/Engineering/Computer Science

Recent Posts

  • Partners in crime: genetic collaborator may influence severity of the rare disease, NGLY1
  • UC study: The dangers of drugged driving are outpacing drunk driving
  • Earth Leadership Program announces 2021 cohort of 21 leading sustainability scientists
  • Psychologists track child psychopathology from before birth
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In