• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

New study sparks fresh call for seagrass preservation

Bioengineer by Bioengineer
July 7, 2020
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

An increase in carbon dioxide emissions equivalent to 5 million cars a year has been caused by the loss of seagrass meadows around the Australian coastline since the 1950s.

IMAGE

Credit: Centre for Marine Ecosystems Research at Edith Cowan University

An increase in carbon dioxide emissions equivalent to 5 million cars a year has been caused by the loss of seagrass meadows around the Australian coastline since the 1950s.

The stark finding was made possible by new modelling done by marine scientists at the Centre for Marine Ecosystems Research at Edith Cowan University (ECU) in Western Australia.

PhD student Cristian Salinas calculated that around 161,150 hectares of seagrass have been lost from Australian coasts since the 1950s, resulting in a 2 per cent increase in annual carbon dioxide emissions from land-use change.

The figures derive from Mr Salinas’s research into the current carbon stocks of Cockburn Sound off the coast of Western Australia.

Cockburn Sound lost around 23 sqkm of seagrass between the 1960s and 1990s due to nutrient overflow caused by urban, port and industrial development.

Mr Salinas said the finding is significant because seagrass meadows play such a vital role in mitigating the impacts of climate change.

“Known as ‘Blue Carbon’, seagrass meadows have been estimated to store CO2 in their soils about 30 times faster than most terrestrial forests,” he said.

“Seagrass meadows have been under constant threat in Australia through coastal development and nutrient run off since the 1960s. On top of that climate change is causing marine heatwaves that are catastrophic to the seagrasses.

“This study serves as a stark reminder of how important these environments are.”

Mr Salinas said the study provided a clear baseline for carbon emissions from seagrass losses in Australia and warned of the need to preserve and restore the meadows. The inclusion of seagrass into the Australian Emission Reduction Fund could contribute to achieve this goal, he said.

Carbon flushed away

The ECU researchers assessed how environmental factors such as water depth, hydrodynamic energy, soil accumulation rates and soil grain size related to changes in soil carbon storage following seagrass loss.

Results showed that the degradation and loss of seagrass alone was not enough to cause the carbon loss from the soil — hydrodynamic energy from waves, tides and currents also played a significant role.

“Without seagrass acting as a buffer, the hydrodynamic energy from the ocean releases the carbon by moving the seabed sand around,” Mr Salinas Zapata said.

Researchers found hydrodynamic energy from water movement was much higher in the shallow water and associated low levels of carbon were recorded in these bare areas.

However, seagrass meadows established in shallow waters were found to have significantly more carbon stored compared to those growing in deeper areas.

“This means that nearshore meadows are particularly important to preserve,” Mr Salinas said.

###

Media Contact
Pepita Smyth
[email protected]

Related Journal Article

http://dx.doi.org/10.1111/gcb.15204

Tags: Atmospheric ScienceClimate ChangeClimate ScienceEcology/EnvironmentMarine/Freshwater BiologyOceanographyPollution/Remediation
Share12Tweet8Share2ShareShareShare2

Related Posts

Phenazines Impact Microbiomes by Targeting Topoisomerase IV

Phenazines Impact Microbiomes by Targeting Topoisomerase IV

September 11, 2025
Turning Noise into Power: Unveiling the Symmetric Ratchet Motor Breakthrough

Turning Noise into Power: Unveiling the Symmetric Ratchet Motor Breakthrough

September 11, 2025

Innovative Protein Sources for Dairy Cattle Nutrition

September 11, 2025

Scientists Identify Astrocytic “Brake” That Inhibits Spinal Cord Repair

September 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    63 shares
    Share 25 Tweet 16
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Phenazines Impact Microbiomes by Targeting Topoisomerase IV

Social Exposome Links to Dementia in Latin America

Machine Embroidery Mimics Skin Tension Lines to Create Mass-Customizable Wearable Textiles

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.