• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

New study reveals the secret of magmatic rocks consisting of only one mineral

Bioengineer by Bioengineer
March 2, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Geologists from Wits University in Johannesburg, South Africa, have come up with an original explanation of how nature may produce an intriguing class of magmatic rocks that are made up of only one type of mineral

IMAGE

Credit: Wits University


Geologists from Wits University in Johannesburg, South Africa, have come up with an original explanation of how nature may produce an intriguing class of magmatic rocks that are made up of only one type of mineral.

The magmatic minerals are stored at great depth in the Earth and are delivered from there into the shallow intrusions close to the planet’s surface in the form of magmas – essentially hot liquids of molten minerals. On cooling, these magmas crystallise to form rocks that are commonly composed of several types of minerals.

However, some of these magmas crystallise into rocks that consist of only one mineral. A typical example is anorthosite – a magmatic rock that is made up of only one mineral called plagioclase – a component that is currently considered to be important for glass fibre manufacturing.

Anorthosites occur as very prominent, white-coloured layers in many layered intrusions worldwide and, in particular, are common for the famous platinum-rich Bushveld Complex in South Africa – the largest basaltic magma chamber in the Earth’s crust – in which these layers extend for hundreds of kilometres.

For years, geologists have been puzzling about how these remarkable layers of pure anorthosites are produced.

“There were many attempts to solve this issue involving various processes that operate within the shallow magma chambers, but they were not particularly successful,” says Professor Rais Latypov from the School of Geosciences at Wits University.

However, Latypov and his team have now found an elegant solution to this long-standing petrological puzzle.

“We took a radically different approach and started searching for a mechanism to generate melts saturated in plagioclase alone outside of the shallow magma chambers,” says Rais Latypov.

“We realised that some melts rising up from deep-seated magma chambers may become saturated in plagioclase alone. This happens in response to decompression as the melts ascend from the depth towards the Earth’s surface.” This research was published a paper in Scientific Reports.

When these magmas arrive into a shallow magma chamber and cool there, they may crystallise stratiform layers of pure plagioclase composition like the ones we observe in the Bushveld Complex.

Latypov and his team believe that their work represents a significant advance in the understanding of the Earth’s magmatic systems.

“This study provides a long-missing bridge between volcanology – where we mostly deal with the generation of melts and their ascent – and igneous petrology that mainly focuses on crystallisation of these melts within magma chambers,” says Latypov.

“We can now paint a much better picture of how some of Earth’s valuable minerals are derived from the Earth’s depth and deposited in the form of monomineralic layers in the shallow intrusions, thus making them much easier to access.”

###

Media Contact
Schalk Mouton
[email protected]
27-827-399-637

Related Journal Article

http://dx.doi.org/10.1038/s41598-020-60778-w

Tags: Earth ScienceGeographyGeology/SoilGeophysicsGeophysics/GravityMaterialsNatureOld WorldScience/MathTemperature-Dependent Phenomena
Share12Tweet8Share2ShareShareShare2

Related Posts

Scientists Convert Plastic Waste into High-Performance CO2 Capture Materials

Scientists Convert Plastic Waste into High-Performance CO2 Capture Materials

September 5, 2025
Decoding Orderly and Disorderly Behavior in 2D Nanomaterials: Paving the Way for AI-Driven Custom Designs

Decoding Orderly and Disorderly Behavior in 2D Nanomaterials: Paving the Way for AI-Driven Custom Designs

September 5, 2025

Physicists Develop Visible Time Crystal for the First Time

September 5, 2025

Adaptive Visible-Infrared Camouflage Enables Wide-Spectrum Radiation Control for Extreme Temperature Environments

September 5, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    150 shares
    Share 60 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • First Confirmed Human Mpox Clade Ib Case China

    54 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Sexual Dimorphism in UGT Deficiency: New Insights Revealed

Revolutionary Sandwich Composite Enhances Building Load Capacity

Dual-Target Fusion Protein Enhances Antiangiogenic Tumor Effects

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.