• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Wednesday, April 14, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

New semiconductor coating may pave way for future green fuels

Bioengineer by Bioengineer
November 18, 2020
in Chemistry
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Sascha Ott

Hydrogen gas and methanol for fuel cells or as raw materials for the chemicals industry, for example, could be produced more sustainably using sunlight, a new Uppsala University study shows. In this study, researchers have developed a new coating material for semiconductors that may create new opportunities to produce fuels in processes that combine direct sunlight with electricity. The study is published in Nature Communications.

“We’ve moved a step closer to our goal of producing the fuel of the future from sunlight,” says Sascha Ott, Professor at the Department of Chemistry, Uppsala University.

Today, hydrogen gas and methanol are produced mainly from fossil sources like oil or natural gas. An environmentally sounder, climate-friendlier option is to make these substances from water and carbon dioxide, using sustainable electricity, in what are known as electrolysers. This process requires electrical energy in the form of applied voltage.

The scientists have devised a new material that reduces the voltage needed in the process by using sunlight to supplement the electricity.

To capture the sunlight, they used semiconductors of the same type as those found in solar cells. The novel aspect of the study is that the semiconductors were covered with a new coating material that extracts electrons from the semiconductor when the sun is shining. These electrons are then available for fuel-forming reactions, such as production of hydrogen gas.

The coating is a “metal-organic framework” – a three-dimensional network composed of individual organic molecules that are held in place, on the sub-nanometre scale, by tiny metal connectors. The molecules capture the electrons generated by the sunlight and remove them from the semiconductor surface, where undesired chemical reactions might otherwise take place. In other words, the coating prevents the system from short-circuiting, which in turn allows efficient collection of electrons.

In tests, the researchers were able to show that their new design greatly reduces the voltage required to extract electrons from the semiconductor.

“Our results suggest that the innovative coatings can be used to improve semiconductor performance, leading to more energy-efficient generation of fuels with lower electrical input requirements,” Sascha Ott says.

###

Anna M. Beiler et al. (2020), Enhancing photovoltages at p-type semiconductors through a redox-active metal-organic framework surface coating. Nature Communications. DOI: 10.1038/s41467-020-19483-5

Media Contact
Sascha Ott
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41467-020-19483-5

Tags: Chemistry/Physics/Materials SciencesClimate ChangeElectrical Engineering/ElectronicsEnergy/Fuel (non-petroleum)MaterialsPollution/RemediationSuperconductors/Semiconductors
Share12Tweet7Share2ShareShareShare1

Related Posts

IMAGE

Superbug killer: New nanotech destroys bacteria and fungal cells

April 14, 2021
IMAGE

Smoking cannabis significantly impairs vision, study finds

April 13, 2021

Giant electronic conductivity change driven by artificial switch of crystal dimensionality

April 13, 2021

Researchers discover new way to monitor & prevent nerve cell deterioration after TBI

April 13, 2021

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    Terahertz accelerates beyond 5G towards 6G

    852 shares
    Share 341 Tweet 213
  • Jonathan Wall receives $1.79 million to develop new amyloidosis treatment

    60 shares
    Share 24 Tweet 15
  • UofL, Medtronic to develop epidural stimulation algorithms for spinal cord injury

    56 shares
    Share 22 Tweet 14
  • A sturdier spike protein explains the faster spread of coronavirus variants

    43 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

BiologyEcology/EnvironmentChemistry/Physics/Materials SciencesPublic HealthClimate ChangeMedicine/HealthMaterialsTechnology/Engineering/Computer SciencecancerGeneticsCell BiologyInfectious/Emerging Diseases

Recent Posts

  • Superbug killer: New nanotech destroys bacteria and fungal cells
  • Rapid decreases in resting heart rate from childhood to adulthood may indicate heart trouble ahead
  • Dueling evolutionary forces drive rapid evolution of salamander coloration
  • Cascading effects of noise on plants persist over long periods and after noise is removed
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In