• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

New method of detecting illnesses including coronavirus and cystic fibrosis

Bioengineer by Bioengineer
September 2, 2020
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Examining individual molecules to detect the presence of disease in blood

IMAGE

Credit: EatFishDesign

A new and quicker method of diagnosing diseases in patients has been created by researchers at the University of Leeds.

The team has developed a system of examining individual molecules to detect the presence of disease in blood.

The molecules – known as biomarkers – are currently collected in their billions – if not trillions – in order to create a detectable signal of a disease.

The new system, which has already been used to detect a protein linked to cystic fibrosis, can compile a detectable signal from just a few biomarkers, and can be done in just a few minutes.

Although in its infancy, the new process could, in theory, speed up coronavirus testing and provide accurate results.

Dr Mukhil Raveendran, the lead researcher of the project said: “One of the main advantages is the minimal sample needed.

“We are able to isolate individual molecules from small samples to identify specific illnesses. The process is very quick, and takes just minutes to provide results.”

The new method involves using DNA origami – a nanoscale technique that involves folding DNA into specific shapes.

The DNA shapes are then used to capture biomarkers, which are indicators of particular diseases.

Dr Raveendran said: “The captured biomarkers are then read with nanopores and we can do this one molecule at a time.

“By coupling DNA origami and nanopores we are able to quantitatively detect disease biomarkers with single molecule sensitivity.”

The group, headed by Professor Christoph Wälti at Leeds’ School of Electronic and Electrical Engineering, is working to adapt the technology to enable the detection of a range of illnesses, including coronavirus (COVID-19).

By modifying the DNA origami to capture COVID-19 molecules, the researchers are aiming to detect the proteins that the coronavirus uses to invade human cells.

Dr Paolo Actis, University Academic Fellow and co-supervisor of the project, said: “We have already demonstrated the detection of an inflammation marker called C-reactive protein (important for the management of many diseases including cystic fibrosis) in diluted serum.

“Sensitive detection of biomarkers is important for diagnosis and for disease management. Our read-out is entirely electrical so it can be miniaturized, enabling point-of-care detection.”

###

The research, being carried out at Leeds’ Bragg Centre for Materials Research, is in part funded by the Medical Research Council.

The findings, Rational design of DNA nanostructures for single molecule biosensing, are published 1 September 2020 in Nature Communications.

Further information

For further details, contact University of Leeds press officer Ian Rosser at [email protected]

Media Contact
Ian Rosser
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41467-020-18132-1

Tags: BiotechnologyCell BiologyDiagnosticsGenesInfectious/Emerging DiseasesMedicine/HealthMicrobiologyMolecular BiologyPhysiologyPublic Health
Share12Tweet8Share2ShareShareShare2

Related Posts

Assessing Speech Recognition in Persian-Speaking Children

September 4, 2025

Circuit Links Drive and Social Contact to Mate

September 4, 2025

Leadership Coaching Boosts Incident Reporting in Critical Care

September 4, 2025

AI-Driven Virtual Cells: Revolutionizing Cancer Research

September 4, 2025
Please login to join discussion

POPULAR NEWS

  • Needlestick Injury Rates in Nurses and Students in Pakistan

    297 shares
    Share 119 Tweet 74
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    143 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    118 shares
    Share 47 Tweet 30

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Assessing Speech Recognition in Persian-Speaking Children

Circuit Links Drive and Social Contact to Mate

Leadership Coaching Boosts Incident Reporting in Critical Care

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.