• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Friday, January 22, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Bioengineering

‘Neural Dust,’ Implanted In Brain, May Let Minds Meld With Machines

Bioengineer by Bioengineer
October 29, 2013
in Bioengineering
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Earlier this month, five researchers at the University of California, Berkeley, put out a paper discussing the possible development of mind-reading “neural dust,” which could be implanted directly into the human brain to allow people to interact with machines.

The paper is what the MIT Technology Review calls a theoretical study: The idea is “littered with challenges beyond the state-of-the-art.”

But according to the Berkeley team, this neural dust sprinkled into an individual’s brain tissue could form an “implantable neural interface system that remains viable for a lifetime.”

The particles of neural dust would be very small, not more than 100 micrometers across — that’s 100 millionths of a meter. Each particle would actually be a sensor capable of measuring electrical activity in neurons, covered in polymer to render it biologically neutral and backed by a piezoelectric material that could convert electrical signals into ultrasound. Thousands of these sensors could be constructed “at the tips of fine wire arrays,” the paper explains. The wire arrays could then be inserted directly into brain tissue. Once the sensors pulled free of the wire, the arrays would be withdrawn.

Implanted in the brain, these sensors could theoretically work wonders. Ryan Whitwam of ExtremeTech speculates that they could enable brain-machine interfaces, mind reading or even “science-fictional telepathy.”

The Berkeley team — Dongjin Seo, Jose Carmena, Jan Rabaey, Elad Alon and Michel M. Maharbiz — certainly have vision. The MIT Technology Review mentions that Maharbiz developed “the world’s first remotely controlled beetle,” which the journal called “one of the top 10 emerging technologies of 2009.”

But should the team try to make their proposed neural dust a reality, they face significant challenges — including, rather critically, making sure the system is efficient enough to “avoid heating between skull and brain.”

Story Source:

The above story is reprinted from materials provided by huffingtonpost.com, Betsy Isaacson.

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Robo-fish

September 19, 2016
blank

Mice born from ‘tricked’ eggs

September 17, 2016

UCLA researchers use stem cells to grow 3-D lung-in-a-dish

September 16, 2016

Sixteen MIT grad students named Siebel Scholars for 2017

September 16, 2016
Next Post
The tree of life made out of Nasonia microbes. (Robert Brucker/Vanderbilt)

Microbes can influence evolution of their hosts

blank

Proteomics can improve breast cancer treatment

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    The map of nuclear deformation takes the form of a mountain landscape

    54 shares
    Share 22 Tweet 14
  • People living with HIV face premature heart disease and barriers to care

    64 shares
    Share 26 Tweet 16
  • New drug form may help treat osteoporosis, calcium-related disorders

    40 shares
    Share 16 Tweet 10
  • New findings help explain how COVID-19 overpowers the immune system

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Climate ChangeEcology/EnvironmentMaterialsChemistry/Physics/Materials SciencesCell BiologyTechnology/Engineering/Computer ScienceBiologycancerGeneticsMedicine/HealthPublic HealthInfectious/Emerging Diseases

Recent Posts

  • New combination of immunotherapies shows great promise for treating lung cancer
  • Astronomers discover first cloudless, Jupiter-like planet
  • Advances in modeling and sensors can help farmers and insurers manage risk
  • Bringing atoms to a standstill: NIST miniaturizes laser cooling
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In