• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Sunday, May 29, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Immunology

Metal ions help COVID-19 virus to disguise itself

Bioengineer by Bioengineer
June 2, 2021
in Immunology
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Positively charged atoms steady the machinery that the virus uses to trick the system

IMAGE

Credit: Yogesh Gupta, PhD, The University of Texas Health Science Center at San Antonio

SAN ANTONIO (June 2, 2021) — Scientists from The University of Texas Health Science Center at San Antonio have discovered a mechanism by which SARS-CoV-2 exploits changes in metal ion concentrations to disguise itself in the body. Varying concentrations of metal ions — positively charged atoms such as magnesium, manganese and calcium — are observed in hospitalized COVID-19 patients.

“This is a newly described metal-dependent mechanism by which these ions help the virus to evade immune surveillance,” said Yogesh Gupta, PhD, senior author of the research published June 2 in the journal Nature Communications. Dr. Gupta is assistant professor of biochemistry and structural biology at the UT Health Science Center San Antonio and investigator with its Greehey Children’s Cancer Research Institute.

Dr. Gupta and colleagues captured atomic-level snapshots during various stages of camouflaging activity of the coronavirus. It turns out metal ions have an architectural purpose — they form a bridge between viral messenger RNA (which are instructions for encoding the virus) and a protein complex consisting of viral proteins nsp16 and nsp10. The activity is sort of like a scaffold swaying in the wind and workers laying hands on it to steady it.

With the scaffold stabilized, the virus then uses nsp16 to modify its messenger RNA cap into a Trojan horse unrecognizable to the immune system. This tricks the defenses, protects the RNA code from being degraded and enhances viral growth in the body. This activity is required each time the virus multiplies.

The nsp16/nsp10 protein complex stretches itself when the RNA cap is modified, which is a second finding the scientists reported. The stretching is facilitated by metal ion binding.

The understandings gleaned in this research can eventually aid treatment of all coronaviruses.

“The next step is to use this structural knowledge to develop novel therapies to treat COVID-19 and emerging coronavirus infections,” Dr. Gupta said. “We are already studying how imbalances in metal concentrations regulate the host immune response to these infections.”

###

This research was made possible by the San Antonio Partnership for Precision Therapeutics, the Institute for Integration of Medicine and Science, the Max and Minnie Tomerlin Voelcker Fund, the Cancer Prevention and Research Institute of Texas, UT Health San Antonio and the Greehey Children’s Cancer Research Institute.

A metal ion orients SARS-CoV-2 mRNA to ensure accurate 2′-O methylation of its first nucleotide

Thiruselvam Viswanathan, Anurag Misra, Siu-Hong Chan, Shan Qi, Nan Dai, Shailee Arya, Luis Martinez-Sobrido, Yogesh K. Gupta

First published: June 2, 2021, Nature Communications

https://doi.org/10.1038/s41467-021-23594-y

The University of Texas Health Science Center at San Antonio, also referred to as UT Health San Antonio, is one of the country’s leading health sciences universities and is designated as a Hispanic-Serving Institution by the U.S. Department of Education. With missions of teaching, research, patient care and community engagement, its schools of medicine, nursing, dentistry, health professions and graduate biomedical sciences have graduated more than 37,000 alumni who are leading change, advancing their fields, and renewing hope for patients and their families throughout South Texas and the world. To learn about the many ways “We make lives better®,” visit http://www.uthscsa.edu.

Stay connected with The University of Texas Health Science Center at San Antonio on Facebook, Twitter, LinkedIn, Instagram and YouTube.

To see how we are battling COVID-19, read inspiring stories on Impact.

Media Contact
Will Sansom
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41467-021-23594-y

Tags: Infectious/Emerging DiseasesMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

UMass Amherst grad student awarded fellowship for food allergy research

July 23, 2021
IMAGE

Less-sensitive COVID-19 tests may still achieve optimal results if enough people tested

July 22, 2021

Public trust in CDC, FDA, and Fauci holds steady, survey shows

July 20, 2021

USC study shows male-female differences in immune cell function

July 19, 2021
Please login to join discussion

POPULAR NEWS

  • Masks

    Hidden benefit: Facemasks may reduce severity of COVID-19 and pressure on health systems, researchers find

    44 shares
    Share 18 Tweet 11
  • Breakthrough in estimating fossil fuel CO2 emissions

    46 shares
    Share 18 Tweet 12
  • Sweet discovery could drive down inflammation, cancers and viruses

    43 shares
    Share 17 Tweet 11
  • Wearable mask allows vegetative patients to communicate by breathing

    38 shares
    Share 15 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Weather/StormsVehiclesUrbanizationZoology/Veterinary ScienceVaccineWeaponryViolence/CriminalsVirologyVaccinesUrogenital SystemUniversity of WashingtonVirus

Recent Posts

  • Virtual biopsy set to transform heart transplant care
  • Fastest carbon dioxide catcher heralds new age for direct air capture
  • Joint research revealed the importance of anthropogenic vapors on haze pollution over Hong Kong and Mainland China’s megacities
  • Seeing how odor is processed in the brain
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....