• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Monday, January 18, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Immunology

Marine mammals’ adaptations to low oxygen offer new perspective on COVID-19

Bioengineer by Bioengineer
December 3, 2020
in Immunology
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Humans are poorly adapted for oxygen deprivation, making us vulnerable to long-term effects from a disease that disrupts the body’s oxygen supply pathway

IMAGE

Credit: T.M. Williams

When Terrie Williams began hearing about the wide range of symptoms experienced by patients with COVID-19, she saw a connection between the various ways the disease is affecting people and the many physiological adaptations that have enabled marine mammals to tolerate low oxygen levels during dives.

Williams, a professor of ecology and evolutionary biology at UC Santa Cruz, has spent decades studying the physiology of marine mammals and their extraordinary ability to perform strenuous activities while holding their breath for long periods under water.

“Diving marine mammals experience a lifetime of rapid physiological transitions between normal oxygenation and hypoxia [low oxygen levels],” Williams said. “They’ve got ways to protect themselves and allow their organs to keep functioning while holding their breath for hours at a time, but there’s a whole suite of biological adaptations that had to happen for them to be able to do that.”

Lacking those adaptations, humans are vulnerable to rapid damage in a wide range of tissues when oxygen levels drop due to the effects on the lungs and cardiovascular system of infection with the coronavirus SARS-CoV-2. In a review article published December 3 in Comparative Biochemistry and Physiology, Williams explores how the diving physiology of marine mammals can help us understand the effects of COVID-19.

“It really highlights why it is so important for people to protect themselves from infection with this virus,” she said. “Damage to oxygen-deprived tissues happens fast and can be irreversible, which may account for the long-term effects we are beginning to see in people after coronavirus infections.”

The heart and brain are especially sensitive to oxygen deprivation, and marine mammals have multiple mechanisms to protect these and other critical organs. In the first place, marine mammals have much higher oxygen carrying capacity than humans due to their greater blood volume and hemoglobin concentrations. In addition, some marine mammals contract their spleen during dives to release a store of oxygen-rich blood cells into the circulation. To avoid blood clots resulting from such high concentrations of red blood cells, many species lack a key clotting factor found in other mammals.

Other adaptations include greatly increased concentrations of oxygen-carrying proteins such as myoglobin in heart and skeletal muscles and neuroglobin and cytoglobin in the brain. In addition, numerous safety factors and biochemical buffers enable even the most oxygen-dependent tissues in marine mammals to withstand not only low oxygen but also the subsequent reperfusion of tissues with oxygenated blood. In humans, reperfusion after a heart attack or stroke often leads to additional tissue damage.

According to Williams, the solutions that marine mammals have evolved for tolerating hypoxia provide a natural template for understanding the potential for damage to oxygen-deprived tissues in humans.

“Studying marine mammals allowed me to understand what it takes to protect the body when the availability of oxygen is low,” she said. “There are so many ramifications of shutting down the oxygen pathway, and I think that’s what we’re seeing in these COVID patients.”

Williams is particularly concerned about the so-called “long-haulers” who continue to have symptoms long after they were infected with the coronavirus.

“You hear people say it’s just like the flu, but COVID scares the heck out of me because of the potential for long-term damage to the heart and brain,” she said. “When you think about oxygen deprivation and the tissue repair process, it makes sense that many people are having a hard time getting back to normal life, even after a mild infection.”

Williams urges people to do all they can to avoid becoming infected. “Our heart and brain cells are meant to last a lifetime, and we cannot replace them once they are damaged,” she said. “Dolphins and whales have natural protections that humans lack, so we are highly vulnerable to hypoxia.”

###

Randall Davis, a marine biologist at Texas A&M University, coauthored the paper with Williams. This work was funded by the Office of Naval Research.

Media Contact
Tim Stephens
[email protected]

Related Journal Article

http://dx.doi.org/10.1016/j.cbpa.2020.110849

Tags: BiologyInfectious/Emerging DiseasesMedicine/HealthPhysiology
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

Where COVID-19 hit hardest, sudden deaths outside the hospital increased

January 18, 2021
IMAGE

NIH scientists identify nutrient that helps prevent bacterial infection

January 15, 2021

SARS-CoV-2 antibody test helps select donor blood samples for therapeutic use

January 14, 2021

Scientists identify “immune cop” that detects SARS-CoV-2

January 12, 2021
Next Post
IMAGE

How hot is too hot for life deep below the ocean floor?

IMAGE

Army computer models unveil secret to quieter small drones

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    The map of nuclear deformation takes the form of a mountain landscape

    53 shares
    Share 21 Tweet 13
  • Blood pressure drug may be key to increasing lifespan, new study shows

    44 shares
    Share 18 Tweet 11
  • New drug form may help treat osteoporosis, calcium-related disorders

    39 shares
    Share 16 Tweet 10
  • People living with HIV face premature heart disease and barriers to care

    57 shares
    Share 23 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

BiologyTechnology/Engineering/Computer SciencecancerChemistry/Physics/Materials SciencesEcology/EnvironmentGeneticsMedicine/HealthMaterialsClimate ChangeInfectious/Emerging DiseasesPublic HealthCell Biology

Recent Posts

  • New management approach can help avoid species vulnerability or extinction
  • New computational tool reliably differentiates between cancer and normal cells from single-cell RNA-sequencing data
  • Inexpensive battery charges rapidly for electric vehicles, reduces range anxiety
  • Timing is of the essence when treating brain swelling in mice
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In