• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 31, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Many gas giant exoplanets waiting to be discovered

Bioengineer by Bioengineer
September 27, 2019
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

There is an as-yet-unseen population of Jupiter-like planets orbiting nearby Sun-like stars, awaiting discovery by future missions

IMAGE

Credit: Alan Boss

Washington, DC–There is an as-yet-unseen population of Jupiter-like planets orbiting nearby Sun-like stars, awaiting discovery by future missions like NASA’s WFIRST space telescope, according to new models of gas giant planet formation by Carnegie’s Alan Boss, described in an upcoming publication in The Astrophysical Journal. His models are supported by a new Science paper on the surprising discovery of a gas giant planet orbiting a low-mass star.

“Astronomers have struck a bonanza in searching for and detecting exoplanets of every size and stripe since the first confirmed exoplanet, a hot Jupiter, was discovered in 1995,” Boss explained. “Literally thousands upon thousands have been found to date, with masses ranging from less than that of Earth, to many times the mass of Jupiter.”

But there are still gaping holes in scientists’ knowledge about exoplanets that orbit their stars at distances similar to those at which our Solar System’s gas giants orbit the Sun. In terms of mass and orbital period, planets like Jupiter represent a particularly small population of the known exoplanets, but it’s not yet clear if this is due to biases in the observational techniques used to find them–which favor planets with short-period-orbits over those with long-period-orbits–or if this represents an actual deficit in exoplanet demographics.

All the recent exoplanet discoveries have led to a renewed focus on theoretical planet formation models. Two primary mechanisms exist for predicting how gas giant planets form from the rotating disk of gas and dust that surrounds a young star–bottom-up, called core accretion, and top-down, called disk instability.

The former refers to slowly building a planet through the collisions of increasingly larger material–solid dust grains, pebbles, boulders, and eventually planetesimals. The latter refers to a rapidly triggered process that occurs when the disk is massive and cool enough to form spiral arms and then dense clumps of self-gravitating gas and dust contract and coalesce into a baby planet.

While core accretion is considered the consensus planet-formation mechanism, Boss has long been a proponent of the competing disk instability mechanism, dating back to a seminal 1997 Science paper.

The just-published discovery by an Institute for Space Studies of Catalonia-led team of a star that’s a tenth the mass of our Sun and hosts at least one gas giant planet is challenging the core-accretion method.

The mass of a disk should be proportional to the mass of the young star around which it rotates. The fact that at least one gas giant–possibly two–was found around a star that’s so much smaller than our Sun indicates that either the original disk was enormous, or that core accretion does not work in this system. Orbital periods for lower mass stars are longer, which prevents core accretion from forming gas giants before the disk gas disappears, as core accretion is a much slower process than disk instability, according to Boss.

“It’s a great vindication for the disk instability method and a demonstration how one unusual discovery can swing the pendulum on our understanding of how planets form,” said one of the IEEC research team’s members, Guillem Anglada-Escudé, himself a former Carnegie postdoc.

Boss’ latest simulations follow the three-dimensional evolution of hot disks that start out in a stable configuration. On a variety of time scales, these disks cool down and form spiral arms, eventually resulting in dense clumps representing newborn protoplanets. Their masses and distances from the host star are similar to that of Jupiter and Saturn.

“My new models show that disk instability can form dense clumps at distances similar to those of the Solar System’s giant planets,” said Boss. “The exoplanet census is still very much underway, and this work suggests that there are many more gas giants out there waiting to be counted.”

###

The Carnegie Institution for Science (carnegiescience.edu) is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Media Contact
Alan Boss
[email protected]

Tags: AstronomyAstrophysicsComets/AsteroidsPlanets/MoonsSpace/Planetary ScienceStars/The Sun
Share14Tweet9Share2ShareShareShare2

Related Posts

blank

Innovative Pimple Patches Offer Effective Solution for Stubborn Acne

August 29, 2025

Revealing the Unseen: A Breakthrough Method to Enhance Nanoscale Light Emission

August 29, 2025

Fluorescent Smart Eye Patch Revolutionizes Monitoring of Eye Health

August 29, 2025

Protective Dual Shell Extends Lifespan of Lithium-Rich Batteries

August 29, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Do people and monkeys see colors the same way?

    112 shares
    Share 45 Tweet 28

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Global Ovarian Cancer Burden: 1990-2050 Insights

Disordered Eating Trends Among Norwegian Students Post-COVID

Evaluating Fertilizer Impacts on Sustainable Maize Production

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.